74 lines
1.9 KiB
Factor
74 lines
1.9 KiB
Factor
! Copyright (c) 2008 Eric Mertens.
|
|
! See http://factorcode.org/license.txt for BSD license.
|
|
USING: kernel locals math math.order math.ranges math.statistics
|
|
project-euler.common sequences sequences.private ;
|
|
IN: project-euler.150
|
|
|
|
! http://projecteuler.net/index.php?section=problems&id=150
|
|
|
|
! DESCRIPTION
|
|
! -----------
|
|
|
|
! In a triangular array of positive and negative integers, we wish to find a
|
|
! sub-triangle such that the sum of the numbers it contains is the smallest
|
|
! possible.
|
|
|
|
! In the example below, it can be easily verified that the marked triangle
|
|
! satisfies this condition having a sum of -42.
|
|
|
|
! We wish to make such a triangular array with one thousand rows, so we
|
|
! generate 500500 pseudo-random numbers sk in the range +/-2^19, using a type of
|
|
! random number generator (known as a Linear Congruential Generator) as
|
|
! follows:
|
|
|
|
! ...
|
|
|
|
! Find the smallest possible sub-triangle sum.
|
|
|
|
|
|
! SOLUTION
|
|
! --------
|
|
|
|
<PRIVATE
|
|
|
|
! sequence helper functions
|
|
|
|
: partial-sums ( seq -- sums )
|
|
cum-sum 0 prefix ; inline
|
|
|
|
: partial-sum-infimum ( seq quot -- seq )
|
|
[ 0 0 ] 2dip [ + [ min ] keep ] compose each drop ; inline
|
|
|
|
: map-infimum ( seq quot -- min )
|
|
[ min ] compose 0 swap reduce ; inline
|
|
|
|
! triangle generator functions
|
|
|
|
: next ( t -- new-t s )
|
|
615949 * 797807 + 20 2^ rem dup 19 2^ - ; inline
|
|
|
|
: sums-triangle ( -- seq )
|
|
0 1000 [1,b] [ [ next ] replicate partial-sums ] map nip ; inline
|
|
|
|
:: (euler150) ( m -- n )
|
|
sums-triangle :> table
|
|
m iota [| x |
|
|
x 1 + iota [| y |
|
|
m x - iota [| z |
|
|
x z + table nth-unsafe
|
|
[ y z + 1 + swap nth-unsafe ]
|
|
[ y swap nth-unsafe ] bi -
|
|
] partial-sum-infimum
|
|
] map-infimum
|
|
] map-infimum ; inline
|
|
|
|
PRIVATE>
|
|
|
|
: euler150 ( -- answer )
|
|
1000 (euler150) ;
|
|
|
|
! [ euler150 ] 10 ave-time
|
|
! 30208 ms ave run time - 593.45 SD (10 trials)
|
|
|
|
SOLUTION: euler150
|