factor/extra/project-euler/150/150.factor

74 lines
1.9 KiB
Factor

! Copyright (c) 2008 Eric Mertens.
! See http://factorcode.org/license.txt for BSD license.
USING: kernel locals math math.order math.ranges math.statistics
project-euler.common sequences sequences.private ;
IN: project-euler.150
! http://projecteuler.net/index.php?section=problems&id=150
! DESCRIPTION
! -----------
! In a triangular array of positive and negative integers, we wish to find a
! sub-triangle such that the sum of the numbers it contains is the smallest
! possible.
! In the example below, it can be easily verified that the marked triangle
! satisfies this condition having a sum of -42.
! We wish to make such a triangular array with one thousand rows, so we
! generate 500500 pseudo-random numbers sk in the range +/-2^19, using a type of
! random number generator (known as a Linear Congruential Generator) as
! follows:
! ...
! Find the smallest possible sub-triangle sum.
! SOLUTION
! --------
<PRIVATE
! sequence helper functions
: partial-sums ( seq -- sums )
cum-sum 0 prefix ; inline
: partial-sum-infimum ( seq quot -- seq )
[ 0 0 ] 2dip [ + [ min ] keep ] compose each drop ; inline
: map-infimum ( seq quot -- min )
[ min ] compose 0 swap reduce ; inline
! triangle generator functions
: next ( t -- new-t s )
615949 * 797807 + 20 2^ rem dup 19 2^ - ; inline
: sums-triangle ( -- seq )
0 1000 [1,b] [ [ next ] replicate partial-sums ] map nip ; inline
:: (euler150) ( m -- n )
sums-triangle :> table
m iota [| x |
x 1 + iota [| y |
m x - iota [| z |
x z + table nth-unsafe
[ y z + 1 + swap nth-unsafe ]
[ y swap nth-unsafe ] bi -
] partial-sum-infimum
] map-infimum
] map-infimum ; inline
PRIVATE>
: euler150 ( -- answer )
1000 (euler150) ;
! [ euler150 ] 10 ave-time
! 30208 ms ave run time - 593.45 SD (10 trials)
SOLUTION: euler150