factor/vm/code_heap.cpp

209 lines
6.4 KiB
C++

#include "master.hpp"
namespace factor {
code_heap::code_heap(cell size) {
if (size > ((uint64_t)1 << (sizeof(cell) * 8 - 6)))
fatal_error("Heap too large", size);
seg = new segment(align_page(size), true);
if (!seg)
fatal_error("Out of memory in code_heap constructor", size);
cell start = seg->start + getpagesize() + seh_area_size;
allocator = new free_list_allocator<code_block>(seg->end - start, start);
/* See os-windows-x86.64.cpp for seh_area usage */
safepoint_page = (void*)seg->start;
seh_area = (char*)seg->start + getpagesize();
}
code_heap::~code_heap() {
delete allocator;
allocator = NULL;
delete seg;
seg = NULL;
}
void code_heap::write_barrier(code_block* compiled) {
points_to_nursery.insert(compiled);
points_to_aging.insert(compiled);
}
void code_heap::clear_remembered_set() {
points_to_nursery.clear();
points_to_aging.clear();
}
bool code_heap::uninitialized_p(code_block* compiled) {
return uninitialized_blocks.count(compiled) > 0;
}
void code_heap::free(code_block* compiled) {
FACTOR_ASSERT(!uninitialized_p(compiled));
points_to_nursery.erase(compiled);
points_to_aging.erase(compiled);
all_blocks.erase((cell)compiled);
allocator->free(compiled);
}
void code_heap::flush_icache() { factor::flush_icache(seg->start, seg->size); }
void code_heap::sweep() {
auto clear_free_blocks_from_all_blocks = [&](code_block* block, cell size) {
std::set<cell>::iterator erase_from =
all_blocks.lower_bound((cell)block);
std::set<cell>::iterator erase_to =
all_blocks.lower_bound((cell)block + size);
all_blocks.erase(erase_from, erase_to);
};
allocator->sweep(clear_free_blocks_from_all_blocks);
#ifdef FACTOR_DEBUG
verify_all_blocks_set();
#endif
}
void code_heap::verify_all_blocks_set() {
auto all_blocks_set_verifier = [&](code_block* block, cell size) {
FACTOR_ASSERT(all_blocks.find((cell)block) != all_blocks.end());
};
allocator->iterate(all_blocks_set_verifier);
}
code_block* code_heap::code_block_for_address(cell address) {
std::set<cell>::const_iterator blocki = all_blocks.upper_bound(address);
FACTOR_ASSERT(blocki != all_blocks.begin());
--blocki;
code_block* found_block = (code_block*)*blocki;
FACTOR_ASSERT(found_block->entry_point() <=
address /* XXX this isn't valid during fixup. should store the
size in the map
&& address - found_block->entry_point() <
found_block->size()*/);
return found_block;
}
void code_heap::initialize_all_blocks_set() {
all_blocks.clear();
auto all_blocks_set_inserter = [&](code_block* block, cell size) {
all_blocks.insert((cell)block);
};
allocator->iterate(all_blocks_set_inserter);
#ifdef FACTOR_DEBUG
verify_all_blocks_set();
#endif
}
/* Update pointers to words referenced from all code blocks.
Only needed after redefining an existing word.
If generic words were redefined, inline caches need to be reset. */
void factor_vm::update_code_heap_words(bool reset_inline_caches) {
auto word_updater = [&](code_block* block, cell size) {
update_word_references(block, reset_inline_caches);
};
each_code_block(word_updater);
}
/* Fix up new words only.
Fast path for compilation units that only define new words. */
void factor_vm::initialize_code_blocks() {
FACTOR_FOR_EACH(code->uninitialized_blocks) {
initialize_code_block(iter->first, iter->second);
}
code->uninitialized_blocks.clear();
}
/* Allocates memory */
void factor_vm::primitive_modify_code_heap() {
bool reset_inline_caches = to_boolean(ctx->pop());
bool update_existing_words = to_boolean(ctx->pop());
data_root<array> alist(ctx->pop(), this);
cell count = array_capacity(alist.untagged());
if (count == 0)
return;
for (cell i = 0; i < count; i++) {
data_root<array> pair(array_nth(alist.untagged(), i), this);
data_root<word> word(array_nth(pair.untagged(), 0), this);
data_root<object> data(array_nth(pair.untagged(), 1), this);
switch (data.type()) {
case QUOTATION_TYPE:
jit_compile_word(word.value(), data.value(), false);
break;
case ARRAY_TYPE: {
array* compiled_data = data.as<array>().untagged();
cell parameters = array_nth(compiled_data, 0);
cell literals = array_nth(compiled_data, 1);
cell relocation = array_nth(compiled_data, 2);
cell labels = array_nth(compiled_data, 3);
cell code = array_nth(compiled_data, 4);
cell frame_size = untag_fixnum(array_nth(compiled_data, 5));
code_block* compiled =
add_code_block(code_block_optimized, code, labels, word.value(),
relocation, parameters, literals, frame_size);
word->entry_point = compiled->entry_point();
} break;
default:
critical_error("Expected a quotation or an array", data.value());
break;
}
}
if (update_existing_words)
update_code_heap_words(reset_inline_caches);
else
initialize_code_blocks();
}
/* Allocates memory */
void factor_vm::primitive_code_room() {
allocator_room room = code->allocator->as_allocator_room();
ctx->push(tag<byte_array>(byte_array_from_value(&room)));
}
void factor_vm::primitive_strip_stack_traces() {
auto stack_trace_stripper = [](code_block* block, cell size) {
block->owner = false_object;
};
each_code_block(stack_trace_stripper);
}
/* Allocates memory */
cell factor_vm::code_blocks() {
std::vector<cell> objects;
auto code_block_accumulator = [&](code_block* block, cell size) {
objects.push_back(block->owner);
objects.push_back(block->parameters);
objects.push_back(block->relocation);
objects.push_back(tag_fixnum(block->type()));
objects.push_back(tag_fixnum(block->size()));
/* Note: the entry point is always a multiple of the heap
alignment (16 bytes). We cannot allocate while iterating
through the code heap, so it is not possible to call
from_unsigned_cell() here. It is OK, however, to add it as
if it were a fixnum, and have library code shift it to the
left by 4. */
cell entry_point = block->entry_point();
FACTOR_ASSERT((entry_point & (data_alignment - 1)) == 0);
FACTOR_ASSERT((entry_point & TAG_MASK) == FIXNUM_TYPE);
objects.push_back(entry_point);
};
each_code_block(code_block_accumulator);
return std_vector_to_array(objects);
}
/* Allocates memory */
void factor_vm::primitive_code_blocks() { ctx->push(code_blocks()); }
}