130 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Factor
		
	
	
			
		
		
	
	
			130 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Factor
		
	
	
! Copyright (c) 2007-2008 Aaron Schaefer.
 | 
						|
! See http://factorcode.org/license.txt for BSD license.
 | 
						|
USING: arrays kernel make math math.functions math.matrices math.miller-rabin
 | 
						|
    math.order math.parser math.primes.factors math.ranges math.ratios
 | 
						|
    sequences sorting strings unicode.case ;
 | 
						|
IN: project-euler.common
 | 
						|
 | 
						|
! A collection of words used by more than one Project Euler solution
 | 
						|
! and/or related words that could be useful for future problems.
 | 
						|
 | 
						|
! Problems using each public word
 | 
						|
! -------------------------------
 | 
						|
! alpha-value - #22, #42
 | 
						|
! cartesian-product - #4, #27, #29, #32, #33, #43, #44, #56
 | 
						|
! log10 - #25, #134
 | 
						|
! max-path - #18, #67
 | 
						|
! mediant - #71, #73
 | 
						|
! nth-triangle - #12, #42
 | 
						|
! number>digits - #16, #20, #30, #34, #35, #38, #43, #52, #55, #56, #92
 | 
						|
! palindrome? - #4, #36, #55
 | 
						|
! pandigital? - #32, #38
 | 
						|
! pentagonal? - #44, #45
 | 
						|
! propagate-all - #18, #67
 | 
						|
! sum-proper-divisors - #21
 | 
						|
! tau* - #12
 | 
						|
! [uad]-transform - #39, #75
 | 
						|
 | 
						|
 | 
						|
: nth-pair ( seq n -- nth next )
 | 
						|
    tail-slice first2 ;
 | 
						|
 | 
						|
: perfect-square? ( n -- ? )
 | 
						|
    dup sqrt mod zero? ;
 | 
						|
 | 
						|
<PRIVATE
 | 
						|
 | 
						|
: max-children ( seq -- seq )
 | 
						|
    [ dup length 1- [ nth-pair max , ] with each ] { } make ;
 | 
						|
 | 
						|
! Propagate one row into the upper one
 | 
						|
: propagate ( bottom top -- newtop )
 | 
						|
    [ over rest rot first2 max rot + ] map nip ;
 | 
						|
 | 
						|
: (sum-divisors) ( n -- sum )
 | 
						|
    dup sqrt >integer [1,b] [
 | 
						|
        [ 2dup mod 0 = [ 2dup / + , ] [ drop ] if ] each
 | 
						|
        dup perfect-square? [ sqrt >fixnum neg , ] [ drop ] if
 | 
						|
    ] { } make sum ;
 | 
						|
 | 
						|
: transform ( triple matrix -- new-triple )
 | 
						|
    [ 1array ] dip m. first ;
 | 
						|
 | 
						|
PRIVATE>
 | 
						|
 | 
						|
: alpha-value ( str -- n )
 | 
						|
    >lower [ CHAR: a - 1+ ] sigma ;
 | 
						|
 | 
						|
: cartesian-product ( seq1 seq2 -- seq1xseq2 )
 | 
						|
    swap [ swap [ 2array ] with map ] with map concat ;
 | 
						|
 | 
						|
: log10 ( m -- n )
 | 
						|
    log 10 log / ;
 | 
						|
 | 
						|
: mediant ( a/c b/d -- (a+b)/(c+d) )
 | 
						|
    2>fraction [ + ] 2bi@ / ;
 | 
						|
 | 
						|
: max-path ( triangle -- n )
 | 
						|
    dup length 1 > [
 | 
						|
        2 cut* first2 max-children [ + ] 2map suffix max-path
 | 
						|
    ] [
 | 
						|
        first first
 | 
						|
    ] if ;
 | 
						|
 | 
						|
: number>digits ( n -- seq )
 | 
						|
    [ dup 0 = not ] [ 10 /mod ] [ ] produce reverse nip ;
 | 
						|
 | 
						|
: nth-triangle ( n -- n )
 | 
						|
    dup 1+ * 2 / ;
 | 
						|
 | 
						|
: palindrome? ( n -- ? )
 | 
						|
    number>string dup reverse = ;
 | 
						|
 | 
						|
: pandigital? ( n -- ? )
 | 
						|
    number>string natural-sort >string "123456789" = ;
 | 
						|
 | 
						|
: pentagonal? ( n -- ? )
 | 
						|
    dup 0 > [ 24 * 1+ sqrt 1+ 6 / 1 mod zero? ] [ drop f ] if ;
 | 
						|
 | 
						|
! Not strictly needed, but it is nice to be able to dump the triangle after the
 | 
						|
! propagation
 | 
						|
: propagate-all ( triangle -- new-triangle )
 | 
						|
    reverse [ first dup ] [ rest ] bi
 | 
						|
    [ propagate dup ] map nip reverse swap suffix ;
 | 
						|
 | 
						|
: sum-divisors ( n -- sum )
 | 
						|
    dup 4 < [ { 0 1 3 4 } nth ] [ (sum-divisors) ] if ;
 | 
						|
 | 
						|
: sum-proper-divisors ( n -- sum )
 | 
						|
    dup sum-divisors swap - ;
 | 
						|
 | 
						|
: abundant? ( n -- ? )
 | 
						|
    dup sum-proper-divisors < ;
 | 
						|
 | 
						|
: deficient? ( n -- ? )
 | 
						|
    dup sum-proper-divisors > ;
 | 
						|
 | 
						|
: perfect? ( n -- ? )
 | 
						|
    dup sum-proper-divisors = ;
 | 
						|
 | 
						|
! The divisor function, counts the number of divisors
 | 
						|
: tau ( m -- n )
 | 
						|
    group-factors flip second 1 [ 1+ * ] reduce ;
 | 
						|
 | 
						|
! Optimized brute-force, is often faster than prime factorization
 | 
						|
: tau* ( m -- n )
 | 
						|
    factor-2s dup [ 1+ ]
 | 
						|
    [ perfect-square? -1 0 ? ]
 | 
						|
    [ dup sqrt >fixnum [1,b] ] tri* [
 | 
						|
        dupd mod 0 = [ [ 2 + ] dip ] when
 | 
						|
    ] each drop * ;
 | 
						|
 | 
						|
! These transforms are for generating primitive Pythagorean triples
 | 
						|
: u-transform ( triple -- new-triple )
 | 
						|
    { { 1 2 2 } { -2 -1 -2 } { 2 2 3 } } transform ;
 | 
						|
: a-transform ( triple -- new-triple )
 | 
						|
    { { 1 2 2 } { 2 1 2 } { 2 2 3 } } transform ;
 | 
						|
: d-transform ( triple -- new-triple )
 | 
						|
    { { -1 -2 -2 } { 2 1 2 } { 2 2 3 } } transform ;
 | 
						|
 |