factor/vm/math.c

663 lines
12 KiB
C

#include "factor.h"
/* Fixnums */
F_FIXNUM to_fixnum(CELL tagged)
{
F_RATIO* r;
F_ARRAY* x;
F_ARRAY* y;
F_FLOAT* f;
switch(TAG(tagged))
{
case FIXNUM_TYPE:
return untag_fixnum_fast(tagged);
case BIGNUM_TYPE:
return (F_FIXNUM)s48_bignum_to_fixnum((F_ARRAY*)UNTAG(tagged));
case RATIO_TYPE:
r = (F_RATIO*)UNTAG(tagged);
x = to_bignum(r->numerator);
y = to_bignum(r->denominator);
return to_fixnum(tag_bignum(s48_bignum_quotient(x,y)));
case FLOAT_TYPE:
f = (F_FLOAT*)UNTAG(tagged);
return (F_FIXNUM)f->n;
default:
type_error(FIXNUM_TYPE,tagged);
return -1; /* can't happen */
}
}
void primitive_to_fixnum(void)
{
drepl(tag_fixnum(to_fixnum(dpeek())));
}
#define POP_FIXNUMS(x,y) \
F_FIXNUM x, y; \
y = untag_fixnum_fast(dpop()); \
x = untag_fixnum_fast(dpop());
/* The fixnum arithmetic operations defined in C are relatively slow.
The Factor compiler has optimized assembly intrinsics for all these
operations. */
void primitive_fixnum_add(void)
{
POP_FIXNUMS(x,y)
box_signed_cell(x + y);
}
void primitive_fixnum_add_fast(void)
{
POP_FIXNUMS(x,y)
dpush(tag_fixnum(x + y));
}
void primitive_fixnum_subtract(void)
{
POP_FIXNUMS(x,y)
box_signed_cell(x - y);
}
void primitive_fixnum_subtract_fast(void)
{
POP_FIXNUMS(x,y)
dpush(tag_fixnum(x - y));
}
/**
* Multiply two integers, and trap overflow.
* Thanks to David Blaikie (The_Vulture from freenode #java) for the hint.
*/
void primitive_fixnum_multiply(void)
{
POP_FIXNUMS(x,y)
if(x == 0 || y == 0)
dpush(tag_fixnum(0));
else
{
F_FIXNUM prod = x * y;
/* if this is not equal, we have overflow */
if(prod / x == y)
box_signed_cell(prod);
else
{
dpush(tag_bignum(
s48_bignum_multiply(
s48_fixnum_to_bignum(x),
s48_fixnum_to_bignum(y))));
}
}
}
void primitive_fixnum_divint(void)
{
POP_FIXNUMS(x,y)
box_signed_cell(x / y);
}
void primitive_fixnum_divfloat(void)
{
POP_FIXNUMS(x,y)
box_double((double)x / (double)y);
}
void primitive_fixnum_divmod(void)
{
POP_FIXNUMS(x,y)
box_signed_cell(x / y);
box_signed_cell(x % y);
}
void primitive_fixnum_mod(void)
{
POP_FIXNUMS(x,y)
dpush(tag_fixnum(x % y));
}
void primitive_fixnum_and(void)
{
POP_FIXNUMS(x,y)
dpush(tag_fixnum(x & y));
}
void primitive_fixnum_or(void)
{
POP_FIXNUMS(x,y)
dpush(tag_fixnum(x | y));
}
void primitive_fixnum_xor(void)
{
POP_FIXNUMS(x,y)
dpush(tag_fixnum(x ^ y));
}
/*
* Note the hairy overflow check.
* If we're shifting right by n bits, we won't overflow as long as none of the
* high WORD_SIZE-TAG_BITS-n bits are set.
*/
void primitive_fixnum_shift(void)
{
POP_FIXNUMS(x,y)
if(x == 0 || y == 0)
{
dpush(tag_fixnum(x));
return;
}
else if(y < 0)
{
if(y <= -WORD_SIZE)
dpush(x < 0 ? tag_fixnum(-1) : tag_fixnum(0));
else
dpush(tag_fixnum(x >> -y));
return;
}
else if(y < WORD_SIZE - TAG_BITS)
{
F_FIXNUM mask = -(1 << (WORD_SIZE - 1 - TAG_BITS - y));
if((x > 0 && (x & mask) == 0) || (x & mask) == mask)
{
dpush(tag_fixnum(x << y));
return;
}
}
dpush(tag_bignum(s48_bignum_arithmetic_shift(
s48_fixnum_to_bignum(x),y)));
}
void primitive_fixnum_less(void)
{
POP_FIXNUMS(x,y)
box_boolean(x < y);
}
void primitive_fixnum_lesseq(void)
{
POP_FIXNUMS(x,y)
box_boolean(x <= y);
}
void primitive_fixnum_greater(void)
{
POP_FIXNUMS(x,y)
box_boolean(x > y);
}
void primitive_fixnum_greatereq(void)
{
POP_FIXNUMS(x,y)
box_boolean(x >= y);
}
void primitive_fixnum_not(void)
{
drepl(tag_fixnum(~untag_fixnum_fast(dpeek())));
}
#define INT_DEFBOX(name,type) \
void name (type integer) \
{ \
dpush(tag_fixnum(integer)); \
}
#define INT_DEFUNBOX(name,type) \
type name(void) \
{ \
return to_fixnum(dpop()); \
}
INT_DEFBOX(box_signed_1, signed char)
INT_DEFBOX(box_signed_2, signed short)
INT_DEFBOX(box_unsigned_1, unsigned char)
INT_DEFBOX(box_unsigned_2, unsigned short)
INT_DEFUNBOX(unbox_signed_1, signed char)
INT_DEFUNBOX(unbox_signed_2, signed short)
INT_DEFUNBOX(unbox_unsigned_1, unsigned char)
INT_DEFUNBOX(unbox_unsigned_2, unsigned short)
/* Bignums */
CELL to_cell(CELL x)
{
switch(type_of(x))
{
case FIXNUM_TYPE:
return untag_fixnum_fast(x);
case BIGNUM_TYPE:
return s48_bignum_to_fixnum(untag_bignum_fast(x));
default:
type_error(BIGNUM_TYPE,x);
return 0;
}
}
F_ARRAY* to_bignum(CELL tagged)
{
F_RATIO* r;
F_ARRAY* x;
F_ARRAY* y;
F_FLOAT* f;
switch(type_of(tagged))
{
case FIXNUM_TYPE:
return s48_fixnum_to_bignum(untag_fixnum_fast(tagged));
case BIGNUM_TYPE:
return (F_ARRAY*)UNTAG(tagged);
case RATIO_TYPE:
r = (F_RATIO*)UNTAG(tagged);
x = to_bignum(r->numerator);
y = to_bignum(r->denominator);
return s48_bignum_quotient(x,y);
case FLOAT_TYPE:
f = (F_FLOAT*)UNTAG(tagged);
return s48_double_to_bignum(f->n);
default:
type_error(BIGNUM_TYPE,tagged);
return NULL; /* can't happen */
}
}
void primitive_to_bignum(void)
{
drepl(tag_bignum(to_bignum(dpeek())));
}
#define POP_BIGNUMS(x,y) \
F_ARRAY *y = untag_bignum_fast(dpop()); \
F_ARRAY *x = untag_bignum_fast(dpop());
void primitive_bignum_eq(void)
{
POP_BIGNUMS(x,y);
box_boolean(s48_bignum_equal_p(x,y));
}
void primitive_bignum_add(void)
{
POP_BIGNUMS(x,y);
dpush(tag_bignum(s48_bignum_add(x,y)));
}
void primitive_bignum_subtract(void)
{
POP_BIGNUMS(x,y);
dpush(tag_bignum(s48_bignum_subtract(x,y)));
}
void primitive_bignum_multiply(void)
{
POP_BIGNUMS(x,y);
dpush(tag_bignum(s48_bignum_multiply(x,y)));
}
void primitive_bignum_divint(void)
{
POP_BIGNUMS(x,y);
dpush(tag_bignum(s48_bignum_quotient(x,y)));
}
void primitive_bignum_divfloat(void)
{
POP_BIGNUMS(x,y);
box_double(
s48_bignum_to_double(x) /
s48_bignum_to_double(y));
}
void primitive_bignum_divmod(void)
{
F_ARRAY *q, *r;
POP_BIGNUMS(x,y);
s48_bignum_divide(x,y,&q,&r);
dpush(tag_bignum(q));
dpush(tag_bignum(r));
}
void primitive_bignum_mod(void)
{
POP_BIGNUMS(x,y);
dpush(tag_bignum(s48_bignum_remainder(x,y)));
}
void primitive_bignum_and(void)
{
POP_BIGNUMS(x,y);
dpush(tag_bignum(s48_bignum_bitwise_and(x,y)));
}
void primitive_bignum_or(void)
{
POP_BIGNUMS(x,y);
dpush(tag_bignum(s48_bignum_bitwise_ior(x,y)));
}
void primitive_bignum_xor(void)
{
POP_BIGNUMS(x,y);
dpush(tag_bignum(s48_bignum_bitwise_xor(x,y)));
}
void primitive_bignum_shift(void)
{
F_FIXNUM y = untag_fixnum_fast(dpop());
F_ARRAY* x = untag_bignum_fast(dpop());
dpush(tag_bignum(s48_bignum_arithmetic_shift(x,y)));
}
void primitive_bignum_less(void)
{
POP_BIGNUMS(x,y);
box_boolean(s48_bignum_compare(x,y) == bignum_comparison_less);
}
void primitive_bignum_lesseq(void)
{
POP_BIGNUMS(x,y);
switch(s48_bignum_compare(x,y))
{
case bignum_comparison_less:
case bignum_comparison_equal:
dpush(T);
break;
case bignum_comparison_greater:
dpush(F);
break;
default:
critical_error("s48_bignum_compare returns bogus value",0);
break;
}
}
void primitive_bignum_greater(void)
{
POP_BIGNUMS(x,y);
box_boolean(s48_bignum_compare(x,y) == bignum_comparison_greater);
}
void primitive_bignum_greatereq(void)
{
POP_BIGNUMS(x,y);
switch(s48_bignum_compare(x,y))
{
case bignum_comparison_less:
dpush(F);
break;
case bignum_comparison_equal:
case bignum_comparison_greater:
dpush(T);
break;
default:
critical_error("s48_bignum_compare returns bogus value",0);
break;
}
}
void primitive_bignum_not(void)
{
maybe_gc(0);
drepl(tag_bignum(s48_bignum_bitwise_not(
untag_bignum_fast(dpeek()))));
}
void box_signed_cell(F_FIXNUM integer)
{
dpush(allot_integer(integer));
}
F_FIXNUM unbox_signed_cell(void)
{
return to_fixnum(dpop());
}
void box_unsigned_cell(CELL cell)
{
dpush(allot_cell(cell));
}
F_FIXNUM unbox_unsigned_cell(void)
{
return to_cell(dpop());
}
void box_signed_4(s32 n)
{
dpush(tag_bignum(s48_long_to_bignum(n)));
}
s32 unbox_signed_4(void)
{
return to_fixnum(dpop());
}
void box_unsigned_4(u32 n)
{
dpush(tag_bignum(s48_ulong_to_bignum(n)));
}
u32 unbox_unsigned_4(void)
{
return to_cell(dpop());
}
void box_signed_8(s64 n)
{
dpush(tag_bignum(s48_long_long_to_bignum(n)));
}
s64 unbox_signed_8(void)
{
return s48_bignum_to_long_long(to_bignum(dpop()));
}
void box_unsigned_8(u64 n)
{
dpush(tag_bignum(s48_ulong_long_to_bignum(n)));
}
u64 unbox_unsigned_8(void)
{
return s48_bignum_to_ulong_long(to_bignum(dpop()));
}
/* Ratios */
/* Does not reduce to lowest terms, so should only be used by math
library implementation, to avoid breaking invariants. */
void primitive_from_fraction(void)
{
F_RATIO* ratio = ratio = allot_object(RATIO_TYPE,sizeof(F_RATIO));
ratio->denominator = dpop();
ratio->numerator = dpop();
dpush(RETAG(ratio,RATIO_TYPE));
}
/* Floats */
double to_float(CELL tagged)
{
F_RATIO* r;
double x;
double y;
switch(TAG(tagged))
{
case FIXNUM_TYPE:
return (double)untag_fixnum_fast(tagged);
case BIGNUM_TYPE:
return s48_bignum_to_double((F_ARRAY*)UNTAG(tagged));
case RATIO_TYPE:
r = (F_RATIO*)UNTAG(tagged);
x = to_float(r->numerator);
y = to_float(r->denominator);
return x / y;
case FLOAT_TYPE:
return ((F_FLOAT*)UNTAG(tagged))->n;
default:
type_error(FLOAT_TYPE,tagged);
return 0.0; /* can't happen */
}
}
void primitive_to_float(void)
{
drepl(allot_float(to_float(dpeek())));
}
void primitive_str_to_float(void)
{
F_STRING* str;
char *c_str, *end;
double f;
maybe_gc(sizeof(F_FLOAT));
str = untag_string(dpeek());
/* if the string has nulls or chars > 255, its definitely not a float */
if(!check_string(str,sizeof(char)))
drepl(F);
else
{
c_str = to_char_string(str,false);
end = c_str;
f = strtod(c_str,&end);
if(end != c_str + string_capacity(str))
drepl(F);
else
drepl(allot_float(f));
}
}
void primitive_float_to_str(void)
{
char tmp[33];
maybe_gc(sizeof(F_FLOAT));
snprintf(tmp,32,"%.16g",to_float(dpop()));
tmp[32] = '\0';
box_char_string(tmp);
}
#define GC_AND_POP_FLOATS(x,y) \
double x, y; \
maybe_gc(sizeof(F_FLOAT)); \
y = untag_float_fast(dpop()); \
x = untag_float_fast(dpop());
void primitive_float_add(void)
{
GC_AND_POP_FLOATS(x,y);
box_float(x + y);
}
void primitive_float_subtract(void)
{
GC_AND_POP_FLOATS(x,y);
box_float(x - y);
}
void primitive_float_multiply(void)
{
GC_AND_POP_FLOATS(x,y);
box_float(x * y);
}
void primitive_float_divfloat(void)
{
GC_AND_POP_FLOATS(x,y);
box_float(x / y);
}
void primitive_float_mod(void)
{
GC_AND_POP_FLOATS(x,y);
box_float(fmod(x,y));
}
void primitive_float_less(void)
{
GC_AND_POP_FLOATS(x,y);
box_boolean(x < y);
}
void primitive_float_lesseq(void)
{
GC_AND_POP_FLOATS(x,y);
box_boolean(x <= y);
}
void primitive_float_greater(void)
{
GC_AND_POP_FLOATS(x,y);
box_boolean(x > y);
}
void primitive_float_greatereq(void)
{
GC_AND_POP_FLOATS(x,y);
box_boolean(x >= y);
}
void primitive_float_bits(void)
{
FLOAT_BITS b;
b.x = unbox_float();
box_unsigned_4(b.y);
}
void primitive_bits_float(void)
{
FLOAT_BITS b;
b.y = unbox_unsigned_4();
box_float(b.x);
}
void primitive_double_bits(void)
{
DOUBLE_BITS b;
b.x = unbox_double();
box_unsigned_8(b.y);
}
void primitive_bits_double(void)
{
DOUBLE_BITS b;
b.y = unbox_unsigned_8();
box_double(b.x);
}
#define FLO_DEFBOX(name,type) \
void name (type flo) \
{ \
dpush(allot_float(flo)); \
}
#define FLO_DEFUNBOX(name,type) \
type name(void) \
{ \
return to_float(dpop()); \
}
FLO_DEFBOX(box_float,float)
FLO_DEFUNBOX(unbox_float,float)
FLO_DEFBOX(box_double,double)
FLO_DEFUNBOX(unbox_double,double)
/* Complex numbers */
void primitive_from_rect(void)
{
F_COMPLEX* complex = allot_object(COMPLEX_TYPE,sizeof(F_COMPLEX));
complex->imaginary = dpop();
complex->real = dpop();
dpush(RETAG(complex,COMPLEX_TYPE));
}