89 lines
2.5 KiB
Factor
89 lines
2.5 KiB
Factor
! Copyright (C) 2007-2009 Samuel Tardieu.
|
|
! See http://factorcode.org/license.txt for BSD license.
|
|
USING: combinators combinators.short-circuit fry kernel math
|
|
math.bitwise math.functions math.order math.primes.erato
|
|
math.primes.erato.private math.primes.miller-rabin math.ranges
|
|
literals random sequences sets vectors ;
|
|
IN: math.primes
|
|
|
|
<PRIVATE
|
|
|
|
: look-in-bitmap ( n -- ? ) $[ 8999999 sieve ] marked-unsafe? ; inline
|
|
|
|
: (prime?) ( n -- ? )
|
|
dup 8999999 <= [ look-in-bitmap ] [ miller-rabin ] if ;
|
|
|
|
! In order not to reallocate large vectors, we compute the upper bound
|
|
! of the number of primes in a given interval. We use a double inequality given
|
|
! by Pierre Dusart in http://www.ams.org/mathscinet-getitem?mr=99d:11133
|
|
! for x > 598. Under this limit, we know that there are at most 108 primes.
|
|
: upper-pi ( x -- y )
|
|
dup log [ / ] [ 1.2762 swap / 1 + ] bi * ceiling ;
|
|
|
|
: lower-pi ( x -- y )
|
|
dup log [ / ] [ 0.992 swap / 1 + ] bi * floor ;
|
|
|
|
: <primes-vector> ( low high -- vector )
|
|
swap [ [ upper-pi ] [ lower-pi ] bi* - >integer
|
|
108 max 10000 min <vector> ] keep
|
|
3 < [ [ 2 swap push ] keep ] when ;
|
|
|
|
: simple? ( n -- ? ) { [ even? ] [ 3 mod 0 = ] [ 5 mod 0 = ] } 1|| ;
|
|
|
|
PRIVATE>
|
|
|
|
: prime? ( n -- ? )
|
|
{
|
|
{ [ dup 7 < ] [ { 2 3 5 } member? ] }
|
|
{ [ dup simple? ] [ drop f ] }
|
|
[ (prime?) ]
|
|
} cond ; foldable
|
|
|
|
: next-prime ( n -- p )
|
|
dup 2 < [
|
|
drop 2
|
|
] [
|
|
next-odd [ dup prime? ] [ 2 + ] until
|
|
] if ; foldable
|
|
|
|
: primes-between ( low high -- seq )
|
|
[ [ 3 max dup even? [ 1 + ] when ] dip 2 <range> ]
|
|
[ <primes-vector> ] 2bi
|
|
[ '[ [ prime? ] _ push-if ] each ] keep clone ;
|
|
|
|
: primes-upto ( n -- seq ) 2 swap primes-between ;
|
|
|
|
: coprime? ( a b -- ? ) gcd nip 1 = ; foldable
|
|
|
|
: random-prime ( numbits -- p )
|
|
[ ] [ 2^ ] [ random-bits* next-prime ] tri
|
|
2dup < [ 2drop random-prime ] [ 2nip ] if ;
|
|
|
|
: estimated-primes ( m -- n )
|
|
dup log / ; foldable
|
|
|
|
ERROR: no-relative-prime n ;
|
|
|
|
<PRIVATE
|
|
|
|
: (find-relative-prime) ( n guess -- p )
|
|
over 1 <= [ over no-relative-prime ] when
|
|
dup 1 <= [ drop 3 ] when
|
|
[ 2dup coprime? ] [ 2 + ] until nip ;
|
|
|
|
PRIVATE>
|
|
|
|
: find-relative-prime* ( n guess -- p )
|
|
#! find a prime relative to n with initial guess
|
|
>odd (find-relative-prime) ;
|
|
|
|
: find-relative-prime ( n -- p )
|
|
dup random find-relative-prime* ;
|
|
|
|
ERROR: too-few-primes n numbits ;
|
|
|
|
: unique-primes ( n numbits -- seq )
|
|
2dup 2^ estimated-primes > [ too-few-primes ] when
|
|
2dup [ random-prime ] curry replicate
|
|
dup all-unique? [ 2nip ] [ drop unique-primes ] if ;
|