factor/basis/math/primes/primes.factor

89 lines
2.5 KiB
Factor

! Copyright (C) 2007-2009 Samuel Tardieu.
! See http://factorcode.org/license.txt for BSD license.
USING: combinators combinators.short-circuit fry kernel math
math.bitwise math.functions math.order math.primes.erato
math.primes.erato.private math.primes.miller-rabin math.ranges
literals random sequences sets vectors ;
IN: math.primes
<PRIVATE
: look-in-bitmap ( n -- ? ) $[ 8999999 sieve ] marked-unsafe? ; inline
: (prime?) ( n -- ? )
dup 8999999 <= [ look-in-bitmap ] [ miller-rabin ] if ;
! In order not to reallocate large vectors, we compute the upper bound
! of the number of primes in a given interval. We use a double inequality given
! by Pierre Dusart in http://www.ams.org/mathscinet-getitem?mr=99d:11133
! for x > 598. Under this limit, we know that there are at most 108 primes.
: upper-pi ( x -- y )
dup log [ / ] [ 1.2762 swap / 1 + ] bi * ceiling ;
: lower-pi ( x -- y )
dup log [ / ] [ 0.992 swap / 1 + ] bi * floor ;
: <primes-vector> ( low high -- vector )
swap [ [ upper-pi ] [ lower-pi ] bi* - >integer
108 max 10000 min <vector> ] keep
3 < [ [ 2 swap push ] keep ] when ;
: simple? ( n -- ? ) { [ even? ] [ 3 mod 0 = ] [ 5 mod 0 = ] } 1|| ;
PRIVATE>
: prime? ( n -- ? )
{
{ [ dup 7 < ] [ { 2 3 5 } member? ] }
{ [ dup simple? ] [ drop f ] }
[ (prime?) ]
} cond ; foldable
: next-prime ( n -- p )
dup 2 < [
drop 2
] [
next-odd [ dup prime? ] [ 2 + ] until
] if ; foldable
: primes-between ( low high -- seq )
[ [ 3 max dup even? [ 1 + ] when ] dip 2 <range> ]
[ <primes-vector> ] 2bi
[ '[ [ prime? ] _ push-if ] each ] keep clone ;
: primes-upto ( n -- seq ) 2 swap primes-between ;
: coprime? ( a b -- ? ) gcd nip 1 = ; foldable
: random-prime ( numbits -- p )
[ ] [ 2^ ] [ random-bits* next-prime ] tri
2dup < [ 2drop random-prime ] [ 2nip ] if ;
: estimated-primes ( m -- n )
dup log / ; foldable
ERROR: no-relative-prime n ;
<PRIVATE
: (find-relative-prime) ( n guess -- p )
over 1 <= [ over no-relative-prime ] when
dup 1 <= [ drop 3 ] when
[ 2dup coprime? ] [ 2 + ] until nip ;
PRIVATE>
: find-relative-prime* ( n guess -- p )
#! find a prime relative to n with initial guess
>odd (find-relative-prime) ;
: find-relative-prime ( n -- p )
dup random find-relative-prime* ;
ERROR: too-few-primes n numbits ;
: unique-primes ( n numbits -- seq )
2dup 2^ estimated-primes > [ too-few-primes ] when
2dup [ random-prime ] curry replicate
dup all-unique? [ 2nip ] [ drop unique-primes ] if ;