factor/basis/math/functions/functions.factor

269 lines
5.7 KiB
Factor

! Copyright (C) 2004, 2008 Slava Pestov.
! See http://factorcode.org/license.txt for BSD license.
USING: math kernel math.constants math.private
math.libm combinators math.order sequences ;
IN: math.functions
: >fraction ( a/b -- a b )
[ numerator ] [ denominator ] bi ; inline
<PRIVATE
: (rect>) ( x y -- z )
dup 0 = [ drop ] [ <complex> ] if ; inline
PRIVATE>
: rect> ( x y -- z )
over real? over real? and [
(rect>)
] [
"Complex number must have real components" throw
] if ; inline
GENERIC: sqrt ( x -- y ) foldable
M: real sqrt
>float dup 0.0 < [ neg fsqrt 0.0 swap rect> ] [ fsqrt ] if ;
: each-bit ( n quot: ( ? -- ) -- )
over 0 = pick -1 = or [
2drop
] [
2dup >r >r >r odd? r> call r> 2/ r> each-bit
] if ; inline recursive
: map-bits ( n quot: ( ? -- obj ) -- seq )
accumulator [ each-bit ] dip ; inline
: factor-2s ( n -- r s )
#! factor an integer into 2^r * s
dup 0 = [ 1 ] [
0 swap [ dup even? ] [ [ 1+ ] [ 2/ ] bi* ] [ ] while
] if ; inline
<PRIVATE
GENERIC# ^n 1 ( z w -- z^w )
: (^n) 1 swap [ [ dupd * ] when [ sq ] dip ] each-bit nip ; inline
M: integer ^n
[ factor-2s ] dip [ (^n) ] keep rot * shift ;
M: ratio ^n
[ >fraction ] dip tuck [ ^n ] 2bi@ / ;
M: float ^n
(^n) ;
: integer^ ( x y -- z )
dup 0 > [ ^n ] [ neg ^n recip ] if ; inline
PRIVATE>
: >rect ( z -- x y )
[ real-part ] [ imaginary-part ] bi ; inline
: >float-rect ( z -- x y )
>rect [ >float ] bi@ ; inline
: >polar ( z -- abs arg )
>float-rect [ [ sq ] bi@ + fsqrt ] [ swap fatan2 ] 2bi ;
inline
: cis ( arg -- z ) dup fcos swap fsin rect> ; inline
: polar> ( abs arg -- z ) cis * ; inline
<PRIVATE
: ^mag ( w abs arg -- magnitude )
>r >r >float-rect swap r> swap fpow r> rot * fexp /f ;
inline
: ^theta ( w abs arg -- theta )
>r >r >float-rect r> flog * swap r> * + ; inline
: ^complex ( x y -- z )
swap >polar [ ^mag ] [ ^theta ] 3bi polar> ; inline
: real^? ( x y -- ? )
2dup [ real? ] both? [ drop 0 >= ] [ 2drop f ] if ; inline
: 0^ ( x -- z )
dup zero? [ drop 0./0. ] [ 0 < 1./0. 0 ? ] if ; inline
PRIVATE>
: ^ ( x y -- z )
{
{ [ over zero? ] [ nip 0^ ] }
{ [ dup integer? ] [ integer^ ] }
{ [ 2dup real^? ] [ fpow ] }
[ ^complex ]
} cond ;
: (^mod) ( n x y -- z )
1 swap [
[ dupd * pick mod ] when >r sq over mod r>
] each-bit 2nip ; inline
: (gcd) ( b a x y -- a d )
over zero? [
2nip
] [
swap [ /mod >r over * swapd - r> ] keep (gcd)
] if ;
: gcd ( x y -- a d )
0 -rot 1 -rot (gcd) dup 0 < [ neg ] when ; foldable
: lcm ( a b -- c )
[ * ] 2keep gcd nip /i ; foldable
: mod-inv ( x n -- y )
tuck gcd 1 = [
dup 0 < [ + ] [ nip ] if
] [
"Non-trivial divisor found" throw
] if ; foldable
: ^mod ( x y n -- z )
over 0 < [
[ >r neg r> ^mod ] keep mod-inv
] [
-rot (^mod)
] if ; foldable
GENERIC: absq ( x -- y ) foldable
M: real absq sq ;
: ~abs ( x y epsilon -- ? )
>r - abs r> < ;
: ~rel ( x y epsilon -- ? )
>r [ - abs ] 2keep [ abs ] bi@ + r> * < ;
: ~ ( x y epsilon -- ? )
{
{ [ pick fp-nan? pick fp-nan? or ] [ 3drop f ] }
{ [ dup zero? ] [ drop number= ] }
{ [ dup 0 < ] [ ~rel ] }
[ ~abs ]
} cond ;
: conjugate ( z -- z* ) >rect neg rect> ; inline
: arg ( z -- arg ) >float-rect swap fatan2 ; inline
: [-1,1]? ( x -- ? )
dup complex? [ drop f ] [ abs 1 <= ] if ; inline
: >=1? ( x -- ? )
dup complex? [ drop f ] [ 1 >= ] if ; inline
GENERIC: exp ( x -- y )
M: real exp fexp ;
M: complex exp >rect swap fexp swap polar> ;
GENERIC: log ( x -- y )
M: real log dup 0.0 >= [ flog ] [ 0.0 rect> log ] if ;
M: complex log >polar swap flog swap rect> ;
: cos ( x -- y )
dup complex? [
>float-rect 2dup
fcosh swap fcos * -rot
fsinh swap fsin neg * rect>
] [ fcos ] if ; foldable
: sec ( x -- y ) cos recip ; inline
: cosh ( x -- y )
dup complex? [
>float-rect 2dup
fcos swap fcosh * -rot
fsin swap fsinh * rect>
] [ fcosh ] if ; foldable
: sech ( x -- y ) cosh recip ; inline
: sin ( x -- y )
dup complex? [
>float-rect 2dup
fcosh swap fsin * -rot
fsinh swap fcos * rect>
] [ fsin ] if ; foldable
: cosec ( x -- y ) sin recip ; inline
: sinh ( x -- y )
dup complex? [
>float-rect 2dup
fcos swap fsinh * -rot
fsin swap fcosh * rect>
] [ fsinh ] if ; foldable
: cosech ( x -- y ) sinh recip ; inline
: tan ( x -- y )
dup complex? [ dup sin swap cos / ] [ ftan ] if ; inline
: tanh ( x -- y )
dup complex? [ dup sinh swap cosh / ] [ ftanh ] if ; inline
: cot ( x -- y ) tan recip ; inline
: coth ( x -- y ) tanh recip ; inline
: acosh ( x -- y )
dup sq 1- sqrt + log ; inline
: asech ( x -- y ) recip acosh ; inline
: asinh ( x -- y )
dup sq 1+ sqrt + log ; inline
: acosech ( x -- y ) recip asinh ; inline
: atanh ( x -- y )
dup 1+ swap 1- neg / log 2 / ; inline
: acoth ( x -- y ) recip atanh ; inline
: i* ( x -- y ) >rect neg swap rect> ;
: -i* ( x -- y ) >rect swap neg rect> ;
: asin ( x -- y )
dup [-1,1]? [ fasin ] [ i* asinh -i* ] if ; inline
: acos ( x -- y )
dup [-1,1]? [ facos ] [ asin pi 2 / swap - ] if ;
inline
: atan ( x -- y )
dup complex? [ i* atanh i* ] [ fatan ] if ; inline
: asec ( x -- y ) recip acos ; inline
: acosec ( x -- y ) recip asin ; inline
: acot ( x -- y ) recip atan ; inline
: truncate ( x -- y ) dup 1 mod - ; inline
: round ( x -- y ) dup sgn 2 / + truncate ; inline
: floor ( x -- y )
dup 1 mod dup zero?
[ drop ] [ dup 0 < [ - 1- ] [ - ] if ] if ; foldable
: ceiling ( x -- y ) neg floor neg ; foldable