factor/basis/cpu/ppc/ppc.factor

775 lines
22 KiB
Factor

! Copyright (C) 2005, 2009 Slava Pestov.
! See http://factorcode.org/license.txt for BSD license.
USING: accessors assocs sequences kernel combinators make math
math.order math.ranges system namespaces locals layouts words
alien alien.accessors alien.c-types literals cpu.architecture
cpu.ppc.assembler cpu.ppc.assembler.backend compiler.cfg.registers
compiler.cfg.instructions compiler.cfg.comparisons
compiler.codegen.fixup compiler.cfg.intrinsics
compiler.cfg.stack-frame compiler.cfg.build-stack-frame
compiler.units compiler.constants compiler.codegen ;
FROM: cpu.ppc.assembler => B ;
IN: cpu.ppc
! PowerPC register assignments:
! r2-r12: integer vregs
! r15-r29
! r30: integer scratch
! f0-f29: float vregs
! f30: float scratch
! Add some methods to the assembler that are useful to us
M: label (B) [ 0 ] 2dip (B) rc-relative-ppc-3 label-fixup ;
M: label BC [ 0 BC ] dip rc-relative-ppc-2 label-fixup ;
enable-float-intrinsics
<<
\ ##integer>float t frame-required? set-word-prop
\ ##float>integer t frame-required? set-word-prop
>>
M: ppc machine-registers
{
{ int-regs $[ 2 12 [a,b] 15 29 [a,b] append ] }
{ float-regs $[ 0 29 [a,b] ] }
} ;
CONSTANT: scratch-reg 30
CONSTANT: fp-scratch-reg 30
M: ppc two-operand? f ;
M: ppc %load-immediate ( reg n -- ) swap LOAD ;
M: ppc %load-reference ( reg obj -- )
[ 0 swap LOAD32 ] [ rc-absolute-ppc-2/2 rel-immediate ] bi* ;
M: ppc %alien-global ( register symbol dll -- )
[ 0 swap LOAD32 ] 2dip rc-absolute-ppc-2/2 rel-dlsym ;
CONSTANT: ds-reg 13
CONSTANT: rs-reg 14
GENERIC: loc-reg ( loc -- reg )
M: ds-loc loc-reg drop ds-reg ;
M: rs-loc loc-reg drop rs-reg ;
: loc>operand ( loc -- reg n )
[ loc-reg ] [ n>> cells neg ] bi ; inline
M: ppc %peek loc>operand LWZ ;
M: ppc %replace loc>operand STW ;
:: (%inc) ( n reg -- ) reg reg n cells ADDI ; inline
M: ppc %inc-d ( n -- ) ds-reg (%inc) ;
M: ppc %inc-r ( n -- ) rs-reg (%inc) ;
HOOK: reserved-area-size os ( -- n )
! The start of the stack frame contains the size of this frame
! as well as the currently executing XT
: factor-area-size ( -- n ) 2 cells ; foldable
: next-save ( n -- i ) cell - ;
: xt-save ( n -- i ) 2 cells - ;
! Next, we have the spill area as well as the FFI parameter area.
! It is safe for them to overlap, since basic blocks with FFI calls
! will never spill -- indeed, basic blocks with FFI calls do not
! use vregs at all, and the FFI call is a stack analysis sync point.
! In the future this will change and the stack frame logic will
! need to be untangled somewhat.
: param@ ( n -- x ) reserved-area-size + ; inline
: param-save-size ( -- n ) 8 cells ; foldable
: local@ ( n -- x )
reserved-area-size param-save-size + + ; inline
: spill@ ( n -- offset )
spill-offset local@ ;
! Some FP intrinsics need a temporary scratch area in the stack
! frame, 8 bytes in size. This is in the param-save area so it
! does not overlap with spill slots.
: scratch@ ( n -- offset )
factor-area-size + ;
! GC root area
: gc-root@ ( n -- offset )
gc-root-offset local@ ;
! Finally we have the linkage area
HOOK: lr-save os ( -- n )
M: ppc stack-frame-size ( stack-frame -- i )
(stack-frame-size)
param-save-size +
reserved-area-size +
factor-area-size +
4 cells align ;
M: ppc %call ( word -- ) 0 BL rc-relative-ppc-3 rel-word-pic ;
M: ppc %jump ( word -- )
0 6 LOAD32 8 rc-absolute-ppc-2/2 rel-here
0 B rc-relative-ppc-3 rel-word-pic-tail ;
M: ppc %jump-label ( label -- ) B ;
M: ppc %return ( -- ) BLR ;
M:: ppc %dispatch ( src temp -- )
0 temp LOAD32
4 cells rc-absolute-ppc-2/2 rel-here
temp temp src LWZX
temp MTCTR
BCTR ;
:: (%slot) ( obj slot tag temp -- reg offset )
temp slot obj ADD
temp tag neg ; inline
: (%slot-imm) ( obj slot tag -- reg offset )
[ cells ] dip - ; inline
M: ppc %slot ( dst obj slot tag temp -- ) (%slot) LWZ ;
M: ppc %slot-imm ( dst obj slot tag -- ) (%slot-imm) LWZ ;
M: ppc %set-slot ( src obj slot tag temp -- ) (%slot) STW ;
M: ppc %set-slot-imm ( src obj slot tag -- ) (%slot-imm) STW ;
M:: ppc %string-nth ( dst src index temp -- )
[
"end" define-label
temp src index ADD
dst temp string-offset LBZ
0 dst HEX: 80 CMPI
"end" get BLT
temp src string-aux-offset LWZ
temp temp index ADD
temp temp index ADD
temp temp byte-array-offset LHZ
temp temp 7 SLWI
dst dst temp XOR
"end" resolve-label
] with-scope ;
M:: ppc %set-string-nth-fast ( ch obj index temp -- )
temp obj index ADD
ch temp string-offset STB ;
M: ppc %add ADD ;
M: ppc %add-imm ADDI ;
M: ppc %sub swap SUBF ;
M: ppc %sub-imm SUBI ;
M: ppc %mul MULLW ;
M: ppc %mul-imm MULLI ;
M: ppc %and AND ;
M: ppc %and-imm ANDI ;
M: ppc %or OR ;
M: ppc %or-imm ORI ;
M: ppc %xor XOR ;
M: ppc %xor-imm XORI ;
M: ppc %shl SLW ;
M: ppc %shl-imm swapd SLWI ;
M: ppc %shr SRW ;
M: ppc %shr-imm swapd SRWI ;
M: ppc %sar SRAW ;
M: ppc %sar-imm SRAWI ;
M: ppc %not NOT ;
:: overflow-template ( label dst src1 src2 insn -- )
0 0 LI
0 MTXER
dst src2 src1 insn call
label BO ; inline
M: ppc %fixnum-add ( label dst src1 src2 -- )
[ ADDO. ] overflow-template ;
M: ppc %fixnum-sub ( label dst src1 src2 -- )
[ SUBFO. ] overflow-template ;
M: ppc %fixnum-mul ( label dst src1 src2 -- )
[ MULLWO. ] overflow-template ;
: bignum@ ( n -- offset ) cells bignum tag-number - ; inline
M:: ppc %integer>bignum ( dst src temp -- )
[
"end" define-label
dst 0 >bignum %load-reference
! Is it zero? Then just go to the end and return this zero
0 src 0 CMPI
"end" get BEQ
! Allocate a bignum
dst 4 cells bignum temp %allot
! Write length
2 tag-fixnum temp LI
temp dst 1 bignum@ STW
! Compute sign
temp src MR
temp temp cell-bits 1 - SRAWI
temp temp 1 ANDI
! Store sign
temp dst 2 bignum@ STW
! Make negative value positive
temp temp temp ADD
temp temp NEG
temp temp 1 ADDI
temp src temp MULLW
! Store the bignum
temp dst 3 bignum@ STW
"end" resolve-label
] with-scope ;
M:: ppc %bignum>integer ( dst src temp -- )
[
"end" define-label
temp src 1 bignum@ LWZ
! if the length is 1, its just the sign and nothing else,
! so output 0
0 dst LI
0 temp 1 tag-fixnum CMPI
"end" get BEQ
! load the value
dst src 3 bignum@ LWZ
! load the sign
temp src 2 bignum@ LWZ
! branchless arithmetic: we want to turn 0 into 1,
! and 1 into -1
temp temp temp ADD
temp temp 1 SUBI
temp temp NEG
! multiply value by sign
dst dst temp MULLW
"end" resolve-label
] with-scope ;
M: ppc %add-float FADD ;
M: ppc %sub-float FSUB ;
M: ppc %mul-float FMUL ;
M: ppc %div-float FDIV ;
M:: ppc %integer>float ( dst src -- )
HEX: 4330 scratch-reg LIS
scratch-reg 1 0 scratch@ STW
scratch-reg src MR
scratch-reg dup HEX: 8000 XORIS
scratch-reg 1 4 scratch@ STW
dst 1 0 scratch@ LFD
scratch-reg 4503601774854144.0 %load-reference
fp-scratch-reg scratch-reg float-offset LFD
dst dst fp-scratch-reg FSUB ;
M:: ppc %float>integer ( dst src -- )
fp-scratch-reg src FCTIWZ
fp-scratch-reg 1 0 scratch@ STFD
dst 1 4 scratch@ LWZ ;
M: ppc %copy ( dst src rep -- )
{
{ int-rep [ MR ] }
{ double-rep [ FMR ] }
} case ;
M: ppc %unbox-float ( dst src -- ) float-offset LFD ;
M:: ppc %box-float ( dst src temp -- )
dst 16 float temp %allot
src dst float-offset STFD ;
: float-function-param ( i spill-slot -- )
[ float-regs param-regs nth 1 ] [ n>> spill@ ] bi* LFD ;
: float-function-return ( reg -- )
float-regs return-reg 2dup = [ 2drop ] [ FMR ] if ;
M:: ppc %unary-float-function ( dst src func -- )
0 src float-function-param
func f %alien-invoke
dst float-function-return ;
M:: ppc %binary-float-function ( dst src1 src2 func -- )
0 src1 float-function-param
1 src2 float-function-param
func f %alien-invoke
dst float-function-return ;
! Internal format is always double-precision on PowerPC
M: ppc %single>double-float FMR ;
M: ppc %double>single-float FMR ;
M: ppc %unbox-alien ( dst src -- )
alien-offset LWZ ;
M:: ppc %unbox-any-c-ptr ( dst src temp -- )
[
{ "is-byte-array" "end" "start" } [ define-label ] each
! Address is computed in dst
0 dst LI
! Load object into scratch-reg
scratch-reg src MR
! We come back here with displaced aliens
"start" resolve-label
! Is the object f?
0 scratch-reg \ f tag-number CMPI
! If so, done
"end" get BEQ
! Is the object an alien?
0 scratch-reg header-offset LWZ
0 0 alien type-number tag-fixnum CMPI
"is-byte-array" get BNE
! If so, load the offset
0 scratch-reg alien-offset LWZ
! Add it to address being computed
dst dst 0 ADD
! Now recurse on the underlying alien
scratch-reg scratch-reg underlying-alien-offset LWZ
"start" get B
"is-byte-array" resolve-label
! Add byte array address to address being computed
dst dst scratch-reg ADD
! Add an offset to start of byte array's data area
dst dst byte-array-offset ADDI
"end" resolve-label
] with-scope ;
: alien@ ( n -- n' ) cells object tag-number - ;
:: %allot-alien ( dst displacement base temp -- )
dst 4 cells alien temp %allot
temp \ f tag-number %load-immediate
! Store underlying-alien slot
base dst 1 alien@ STW
! Store expired slot
temp dst 2 alien@ STW
! Store offset
displacement dst 3 alien@ STW ;
M:: ppc %box-alien ( dst src temp -- )
[
"f" define-label
dst \ f tag-number %load-immediate
0 src 0 CMPI
"f" get BEQ
dst src temp temp %allot-alien
"f" resolve-label
] with-scope ;
M:: ppc %box-displaced-alien ( dst displacement base displacement' base' base-class -- )
[
"end" define-label
"alloc" define-label
"simple-case" define-label
! If displacement is zero, return the base
dst base MR
0 displacement 0 CMPI
"end" get BEQ
! Quickly use displacement' before its needed for real, as allot temporary
displacement' :> temp
dst 4 cells alien temp %allot
! If base is already a displaced alien, unpack it
0 base \ f tag-number CMPI
"simple-case" get BEQ
temp base header-offset LWZ
0 temp alien type-number tag-fixnum CMPI
"simple-case" get BNE
! displacement += base.displacement
temp base 3 alien@ LWZ
displacement' displacement temp ADD
! base = base.base
base' base 1 alien@ LWZ
"alloc" get B
"simple-case" resolve-label
displacement' displacement MR
base' base MR
"alloc" resolve-label
! Store underlying-alien slot
base' dst 1 alien@ STW
! Store offset
displacement' dst 3 alien@ STW
! Store expired slot (its ok to clobber displacement')
temp \ f tag-number %load-immediate
temp dst 2 alien@ STW
"end" resolve-label
] with-scope ;
M: ppc %alien-unsigned-1 0 LBZ ;
M: ppc %alien-unsigned-2 0 LHZ ;
M: ppc %alien-signed-1 dupd 0 LBZ dup EXTSB ;
M: ppc %alien-signed-2 0 LHA ;
M: ppc %alien-cell 0 LWZ ;
M: ppc %alien-float 0 LFS ;
M: ppc %alien-double 0 LFD ;
M: ppc %set-alien-integer-1 swap 0 STB ;
M: ppc %set-alien-integer-2 swap 0 STH ;
M: ppc %set-alien-cell swap 0 STW ;
M: ppc %set-alien-float swap 0 STFS ;
M: ppc %set-alien-double swap 0 STFD ;
: load-zone-ptr ( reg -- )
"nursery" f %alien-global ;
: load-allot-ptr ( nursery-ptr allot-ptr -- )
[ drop load-zone-ptr ] [ swap 4 LWZ ] 2bi ;
:: inc-allot-ptr ( nursery-ptr allot-ptr n -- )
scratch-reg allot-ptr n 8 align ADDI
scratch-reg nursery-ptr 4 STW ;
:: store-header ( dst class -- )
class type-number tag-fixnum scratch-reg LI
scratch-reg dst 0 STW ;
: store-tagged ( dst tag -- )
dupd tag-number ORI ;
M:: ppc %allot ( dst size class nursery-ptr -- )
nursery-ptr dst load-allot-ptr
nursery-ptr dst size inc-allot-ptr
dst class store-header
dst class store-tagged ;
: load-cards-offset ( dst -- )
[ "cards_offset" f %alien-global ] [ dup 0 LWZ ] bi ;
: load-decks-offset ( dst -- )
[ "decks_offset" f %alien-global ] [ dup 0 LWZ ] bi ;
M:: ppc %write-barrier ( src card# table -- )
card-mark scratch-reg LI
! Mark the card
table load-cards-offset
src card# card-bits SRWI
table scratch-reg card# STBX
! Mark the card deck
table load-decks-offset
src card# deck-bits SRWI
table scratch-reg card# STBX ;
M:: ppc %check-nursery ( label temp1 temp2 -- )
temp2 load-zone-ptr
temp1 temp2 cell LWZ
temp2 temp2 3 cells LWZ
! add ALLOT_BUFFER_ZONE to here
temp1 temp1 1024 ADDI
! is here >= end?
temp1 0 temp2 CMP
label BLE ;
M:: ppc %save-gc-root ( gc-root register -- )
register 1 gc-root gc-root@ STW ;
M:: ppc %load-gc-root ( gc-root register -- )
register 1 gc-root gc-root@ LWZ ;
M:: ppc %call-gc ( gc-root-count -- )
3 1 gc-root-base local@ ADDI
gc-root-count 4 LI
"inline_gc" f %alien-invoke ;
M: ppc %prologue ( n -- )
0 11 LOAD32 rc-absolute-ppc-2/2 rel-this
0 MFLR
{
[ [ 1 1 ] dip neg ADDI ]
[ [ 11 1 ] dip xt-save STW ]
[ 11 LI ]
[ [ 11 1 ] dip next-save STW ]
[ [ 0 1 ] dip lr-save + STW ]
} cleave ;
M: ppc %epilogue ( n -- )
#! At the end of each word that calls a subroutine, we store
#! the previous link register value in r0 by popping it off
#! the stack, set the link register to the contents of r0,
#! and jump to the link register.
[ [ 0 1 ] dip lr-save + LWZ ]
[ [ 1 1 ] dip ADDI ] bi
0 MTLR ;
:: (%boolean) ( dst temp branch1 branch2 -- )
"end" define-label
dst \ f tag-number %load-immediate
"end" get branch1 execute( label -- )
branch2 [ "end" get branch2 execute( label -- ) ] when
dst \ t %load-reference
"end" get resolve-label ; inline
:: %boolean ( dst cc temp -- )
cc negate-cc order-cc {
{ cc< [ dst temp \ BLT f (%boolean) ] }
{ cc<= [ dst temp \ BLE f (%boolean) ] }
{ cc> [ dst temp \ BGT f (%boolean) ] }
{ cc>= [ dst temp \ BGE f (%boolean) ] }
{ cc= [ dst temp \ BEQ f (%boolean) ] }
{ cc/= [ dst temp \ BNE f (%boolean) ] }
} case ;
: (%compare) ( src1 src2 -- ) [ 0 ] dip CMP ; inline
: (%compare-imm) ( src1 src2 -- ) [ 0 ] 2dip CMPI ; inline
: (%compare-float-unordered) ( src1 src2 -- ) [ 0 ] dip FCMPU ; inline
: (%compare-float-ordered) ( src1 src2 -- ) [ 0 ] dip FCMPO ; inline
:: (%compare-float) ( src1 src2 cc compare -- branch1 branch2 )
cc {
{ cc< [ src1 src2 \ compare execute( a b -- ) \ BLT f ] }
{ cc<= [ src1 src2 \ compare execute( a b -- ) \ BLT \ BEQ ] }
{ cc> [ src1 src2 \ compare execute( a b -- ) \ BGT f ] }
{ cc>= [ src1 src2 \ compare execute( a b -- ) \ BGT \ BEQ ] }
{ cc= [ src1 src2 \ compare execute( a b -- ) \ BEQ f ] }
{ cc<> [ src1 src2 \ compare execute( a b -- ) \ BLT \ BGT ] }
{ cc<>= [ src1 src2 \ compare execute( a b -- ) \ BNO f ] }
{ cc/< [ src1 src2 \ compare execute( a b -- ) \ BGE f ] }
{ cc/<= [ src1 src2 \ compare execute( a b -- ) \ BGT \ BO ] }
{ cc/> [ src1 src2 \ compare execute( a b -- ) \ BLE f ] }
{ cc/>= [ src1 src2 \ compare execute( a b -- ) \ BLT \ BO ] }
{ cc/= [ src1 src2 \ compare execute( a b -- ) \ BNE f ] }
{ cc/<> [ src1 src2 \ compare execute( a b -- ) \ BEQ \ BO ] }
{ cc/<>= [ src1 src2 \ compare execute( a b -- ) \ BO f ] }
} case ; inline
M: ppc %compare [ (%compare) ] 2dip %boolean ;
M: ppc %compare-imm [ (%compare-imm) ] 2dip %boolean ;
M:: ppc %compare-float-ordered ( dst src1 src2 cc temp -- )
src1 src2 cc negate-cc \ (%compare-float-ordered) (%compare-float) :> branch2 :> branch1
dst temp branch1 branch2 (%boolean) ;
M:: ppc %compare-float-unordered ( dst src1 src2 cc temp -- )
src1 src2 cc negate-cc \ (%compare-float-unordered) (%compare-float) :> branch2 :> branch1
dst temp branch1 branch2 (%boolean) ;
:: %branch ( label cc -- )
cc order-cc {
{ cc< [ label BLT ] }
{ cc<= [ label BLE ] }
{ cc> [ label BGT ] }
{ cc>= [ label BGE ] }
{ cc= [ label BEQ ] }
{ cc/= [ label BNE ] }
} case ;
M:: ppc %compare-branch ( label src1 src2 cc -- )
src1 src2 (%compare)
label cc %branch ;
M:: ppc %compare-imm-branch ( label src1 src2 cc -- )
src1 src2 (%compare-imm)
label cc %branch ;
:: (%branch) ( label branch1 branch2 -- )
label branch1 execute( label -- )
branch2 [ label branch2 execute( label -- ) ] when ; inline
M:: ppc %compare-float-ordered-branch ( label src1 src2 cc -- )
src1 src2 cc \ (%compare-float-ordered) (%compare-float) :> branch2 :> branch1
label branch1 branch2 (%branch) ;
M:: ppc %compare-float-unordered-branch ( label src1 src2 cc -- )
src1 src2 cc \ (%compare-float-unordered) (%compare-float) :> branch2 :> branch1
label branch1 branch2 (%branch) ;
: load-from-frame ( dst n rep -- )
{
{ int-rep [ [ 1 ] dip LWZ ] }
{ float-rep [ [ 1 ] dip LFS ] }
{ double-rep [ [ 1 ] dip LFD ] }
{ stack-params [ [ 0 1 ] dip LWZ [ 0 1 ] dip param@ STW ] }
} case ;
: next-param@ ( n -- x ) param@ stack-frame get total-size>> + ;
: store-to-frame ( src n rep -- )
{
{ int-rep [ [ 1 ] dip STW ] }
{ float-rep [ [ 1 ] dip STFS ] }
{ double-rep [ [ 1 ] dip STFD ] }
{ stack-params [ [ [ 0 1 ] dip next-param@ LWZ 0 1 ] dip STW ] }
} case ;
M: ppc %spill ( src rep n -- )
swap [ spill@ ] dip store-to-frame ;
M: ppc %reload ( dst rep n -- )
swap [ spill@ ] dip load-from-frame ;
M: ppc %loop-entry ;
M: int-regs return-reg drop 3 ;
M: int-regs param-regs drop { 3 4 5 6 7 8 9 10 } ;
M: float-regs return-reg drop 1 ;
M:: ppc %save-param-reg ( stack reg rep -- )
reg stack local@ rep store-to-frame ;
M:: ppc %load-param-reg ( stack reg rep -- )
reg stack local@ rep load-from-frame ;
M: ppc %prepare-unbox ( -- )
! First parameter is top of stack
3 ds-reg 0 LWZ
ds-reg dup cell SUBI ;
M: ppc %unbox ( n rep func -- )
! Value must be in r3
! Call the unboxer
f %alien-invoke
! Store the return value on the C stack
over [ [ reg-class-of return-reg ] keep %save-param-reg ] [ 2drop ] if ;
M: ppc %unbox-long-long ( n func -- )
! Value must be in r3:r4
! Call the unboxer
f %alien-invoke
! Store the return value on the C stack
[
[ [ 3 1 ] dip local@ STW ]
[ [ 4 1 ] dip cell + local@ STW ] bi
] when* ;
M: ppc %unbox-large-struct ( n c-type -- )
! Value must be in r3
! Compute destination address and load struct size
[ [ 4 1 ] dip local@ ADDI ] [ heap-size 5 LI ] bi*
! Call the function
"to_value_struct" f %alien-invoke ;
M: ppc %box ( n rep func -- )
! If the source is a stack location, load it into freg #0.
! If the source is f, then we assume the value is already in
! freg #0.
[ over [ 0 over reg-class-of param-reg swap %load-param-reg ] [ 2drop ] if ] dip
f %alien-invoke ;
M: ppc %box-long-long ( n func -- )
[
[
[ [ 3 1 ] dip local@ LWZ ]
[ [ 4 1 ] dip cell + local@ LWZ ] bi
] when*
] dip f %alien-invoke ;
: struct-return@ ( n -- n )
[ stack-frame get params>> ] unless* local@ ;
M: ppc %prepare-box-struct ( -- )
#! Compute target address for value struct return
3 1 f struct-return@ ADDI
3 1 0 local@ STW ;
M: ppc %box-large-struct ( n c-type -- )
! If n = f, then we're boxing a returned struct
! Compute destination address and load struct size
[ [ 3 1 ] dip struct-return@ ADDI ] [ heap-size 4 LI ] bi*
! Call the function
"box_value_struct" f %alien-invoke ;
M:: ppc %save-context ( temp1 temp2 callback-allowed? -- )
#! Save Factor stack pointers in case the C code calls a
#! callback which does a GC, which must reliably trace
#! all roots.
temp1 "stack_chain" f %alien-global
temp1 temp1 0 LWZ
1 temp1 0 STW
callback-allowed? [
ds-reg temp1 8 STW
rs-reg temp1 12 STW
] when ;
M: ppc %alien-invoke ( symbol dll -- )
[ 11 ] 2dip %alien-global 11 MTLR BLRL ;
M: ppc %alien-callback ( quot -- )
3 swap %load-reference "c_to_factor" f %alien-invoke ;
M: ppc %prepare-alien-indirect ( -- )
"unbox_alien" f %alien-invoke
15 3 MR ;
M: ppc %alien-indirect ( -- )
15 MTLR BLRL ;
M: ppc %callback-value ( ctype -- )
! Save top of data stack
3 ds-reg 0 LWZ
3 1 0 local@ STW
! Restore data/call/retain stacks
"unnest_stacks" f %alien-invoke
! Restore top of data stack
3 1 0 local@ LWZ
! Unbox former top of data stack to return registers
unbox-return ;
M: ppc small-enough? ( n -- ? ) -32768 32767 between? ;
M: ppc return-struct-in-registers? ( c-type -- ? )
c-type return-in-registers?>> ;
M: ppc %box-small-struct ( c-type -- )
#! Box a <= 16-byte struct returned in r3:r4:r5:r6
heap-size 7 LI
"box_medium_struct" f %alien-invoke ;
: %unbox-struct-1 ( -- )
! Alien must be in r3.
"alien_offset" f %alien-invoke
3 3 0 LWZ ;
: %unbox-struct-2 ( -- )
! Alien must be in r3.
"alien_offset" f %alien-invoke
4 3 4 LWZ
3 3 0 LWZ ;
: %unbox-struct-4 ( -- )
! Alien must be in r3.
"alien_offset" f %alien-invoke
6 3 12 LWZ
5 3 8 LWZ
4 3 4 LWZ
3 3 0 LWZ ;
M: ppc %unbox-small-struct ( size -- )
#! Alien must be in EAX.
heap-size cell align cell /i {
{ 1 [ %unbox-struct-1 ] }
{ 2 [ %unbox-struct-2 ] }
{ 4 [ %unbox-struct-4 ] }
} case ;
enable-float-functions
USE: vocabs.loader
{
{ [ os macosx? ] [ "cpu.ppc.macosx" require ] }
{ [ os linux? ] [ "cpu.ppc.linux" require ] }
} cond
"complex-double" c-type t >>return-in-registers? drop
[
<c-type>
[ alien-unsigned-4 c-bool> ] >>getter
[ [ >c-bool ] 2dip set-alien-unsigned-4 ] >>setter
4 >>size
4 >>align
"box_boolean" >>boxer
"to_boolean" >>unboxer
"bool" define-primitive-type
] with-compilation-unit