factor/extra/project-euler/255/255.factor

108 lines
3.2 KiB
Factor
Raw Normal View History

2010-02-20 12:20:21 -05:00
! Copyright (c) 2009 Jon Harper.
! See http://factorcode.org/license.txt for BSD license.
2010-02-20 12:20:21 -05:00
USING: arrays io kernel locals math math.functions math.parser math.ranges
namespaces prettyprint project-euler.common sequences threads ;
IN: project-euler.255
! http://projecteuler.net/index.php?section=problems&id=255
! DESCRIPTION
! -----------
2010-02-20 12:20:21 -05:00
! We define the rounded-square-root of a positive integer n as the square root
! of n rounded to the nearest integer.
! The following procedure (essentially Heron's method adapted to integer
! arithmetic) finds the rounded-square-root of n:
! Let d be the number of digits of the number n.
! If d is odd, set x_(0) = 2×10^((d-1)2).
! If d is even, set x_(0) = 7×10^((d-2)2).
! Repeat: [see URL for figure ]
! until x_(k+1) = x_(k).
! As an example, let us find the rounded-square-root of n = 4321.
! n has 4 digits, so x_(0) = 7×10^((4-2)2) = 70.
2010-02-20 12:20:21 -05:00
! [ see URL for figure ]
! Since x_(2) = x_(1), we stop here.
2010-02-20 12:20:21 -05:00
! So, after just two iterations, we have found that the rounded-square-root of
! 4321 is 66 (the actual square root is 65.7343137…).
! The number of iterations required when using this method is surprisingly low.
2010-02-20 12:20:21 -05:00
! For example, we can find the rounded-square-root of a 5-digit integer
! (10,000 ≤ n ≤ 99,999) with an average of 3.2102888889 iterations (the average
! value was rounded to 10 decimal places).
! Using the procedure described above, what is the average number of iterations
! required to find the rounded-square-root of a 14-digit number
! (10^(13) ≤ n < 10^(14))? Give your answer rounded to 10 decimal places.
! Note: The symbols ⌊x⌋ and ⌈x⌉ represent the floor function and ceiling
! function respectively.
2010-02-20 12:20:21 -05:00
! SOLUTION
! --------
<PRIVATE
! same as produce, but outputs the sum instead of the sequence of results
: produce-sum ( id pred quot -- sum )
[ 0 ] 2dip [ [ dip swap ] curry ] [ [ dip + ] curry ] bi* while ; inline
: x0 ( i -- x0 )
2010-02-20 12:20:21 -05:00
number-length dup even?
[ 2 - 2 / 10 swap ^ 7 * ]
[ 1 - 2 / 10 swap ^ 2 * ] if ;
2010-02-20 12:20:21 -05:00
: ⌈a/b⌉ ( a b -- ⌈a/b⌉ )
[ 1 - + ] keep /i ;
: xk+1 ( n xk -- xk+1 )
[ ⌈a/b⌉ ] keep + 2 /i ;
: next-multiple ( a multiple -- next )
[ [ 1 - ] dip /i 1 + ] keep * ;
DEFER: iteration#
! Gives the number of iterations when xk+1 has the same value for all a<=i<=n
:: (iteration#) ( i xi a b -- # )
2010-02-20 12:20:21 -05:00
a xi xk+1 dup xi =
[ drop i b a - 1 + * ]
[ i 1 + swap a b iteration# ] if ;
! Gives the number of iterations in the general case by breaking into intervals
! in which xk+1 is the same.
:: iteration# ( i xi a b -- # )
2010-02-20 12:20:21 -05:00
a
a xi next-multiple
[ dup b < ]
[
! set up the values for the next iteration
[ nip [ 1 + ] [ xi + ] bi ] 2keep
! set up the arguments for (iteration#)
2010-02-20 12:20:21 -05:00
[ i xi ] 2dip (iteration#)
] produce-sum
! deal with the last numbers
[ drop b [ i xi ] 2dip (iteration#) ] dip
+ ;
2010-02-20 12:20:21 -05:00
: (euler255) ( a b -- answer )
[ 10^ ] bi@ 1 -
[ [ drop x0 1 swap ] 2keep iteration# ] 2keep
swap - 1 + /f ;
PRIVATE>
2010-02-20 12:20:21 -05:00
: euler255 ( -- answer )
13 14 (euler255) 10 nth-place ;
2010-02-20 12:20:21 -05:00
! [ euler255 ] gc time
! Running time: 37.468911341 seconds
2010-02-20 12:20:21 -05:00
SOLUTION: euler255