Split data out into separate vm-data struct
parent
b07550620f
commit
e8d1612e8e
|
@ -3,13 +3,6 @@
|
|||
namespace factor
|
||||
{
|
||||
|
||||
/* Global variables used to pass fault handler state from signal handler to
|
||||
user-space */
|
||||
cell signal_number;
|
||||
cell signal_fault_addr;
|
||||
unsigned int signal_fpu_status;
|
||||
stack_frame *signal_callstack_top;
|
||||
|
||||
void factorvm::out_of_memory()
|
||||
{
|
||||
print_string("Out of memory\n\n");
|
||||
|
|
156
vm/factor.cpp
156
vm/factor.cpp
|
@ -235,6 +235,8 @@ void* start_standalone_factor_thread(void *arg)
|
|||
VM_C_API void start_standalone_factor(int argc, vm_char **argv)
|
||||
{
|
||||
factorvm *newvm = new factorvm;
|
||||
newvm->print_vm_data();
|
||||
printf("PHIL YEAH: %d %d %d %d\n",(void*)(newvm),(void*)(newvm+1),sizeof(newvm), sizeof(factorvm));
|
||||
vm = newvm;
|
||||
register_vm_with_thread(newvm);
|
||||
return newvm->start_standalone_factor(argc,argv);
|
||||
|
@ -247,4 +249,158 @@ VM_C_API THREADHANDLE start_standalone_factor_in_new_thread(int argc, vm_char **
|
|||
return start_thread(start_standalone_factor_thread,args);
|
||||
}
|
||||
|
||||
|
||||
void factorvm::print_vm_data() {
|
||||
printf("PHIL: stack_chain %d\n",&stack_chain);
|
||||
printf("PHIL: nursery %d\n",&nursery);
|
||||
printf("PHIL: cards_offset %d\n",&cards_offset);
|
||||
printf("PHIL: decks_offset %d\n",&decks_offset);
|
||||
printf("PHIL: userenv %d\n",&userenv);
|
||||
printf("PHIL: ds_size %d\n",&ds_size);
|
||||
printf("PHIL: rs_size %d\n",&rs_size);
|
||||
printf("PHIL: unused_contexts %d\n",&unused_contexts);
|
||||
printf("PHIL: T %d\n",&T);
|
||||
printf("PHIL: profiling_p %d\n",&profiling_p);
|
||||
printf("PHIL: signal_number %d\n",&signal_number);
|
||||
printf("PHIL: signal_fault_addr %d\n",&signal_fault_addr);
|
||||
printf("PHIL: signal_callstack_top %d\n",&signal_callstack_top);
|
||||
printf("PHIL: secure_gc %d\n",&secure_gc);
|
||||
printf("PHIL: gc_off %d\n",&gc_off);
|
||||
printf("PHIL: data %d\n",&data);
|
||||
printf("PHIL: heap_scan_ptr %d\n",&heap_scan_ptr);
|
||||
printf("PHIL: allot_markers_offset %d\n",&allot_markers_offset);
|
||||
printf("PHIL: newspace %d\n",&newspace);
|
||||
printf("PHIL: performing_gc %d\n",&performing_gc);
|
||||
printf("PHIL: performing_compaction %d\n",&performing_compaction);
|
||||
printf("PHIL: collecting_gen %d\n",&collecting_gen);
|
||||
printf("PHIL: collecting_aging_again %d\n",&collecting_aging_again);
|
||||
printf("PHIL: gc_jmp %d\n",&gc_jmp);
|
||||
printf("PHIL: stats %d\n",&stats);
|
||||
printf("PHIL: cards_scanned %d\n",&cards_scanned);
|
||||
printf("PHIL: decks_scanned %d\n",&decks_scanned);
|
||||
printf("PHIL: card_scan_time %d\n",&card_scan_time);
|
||||
printf("PHIL: code_heap_scans %d\n",&code_heap_scans);
|
||||
printf("PHIL: last_code_heap_scan %d\n",&last_code_heap_scan);
|
||||
printf("PHIL: growing_data_heap %d\n",&growing_data_heap);
|
||||
printf("PHIL: old_data_heap %d\n",&old_data_heap);
|
||||
printf("PHIL: gc_locals %d\n",&gc_locals);
|
||||
printf("PHIL: gc_bignums %d\n",&gc_bignums);
|
||||
printf("PHIL: fep_disabled %d\n",&fep_disabled);
|
||||
printf("PHIL: full_output %d\n",&full_output);
|
||||
printf("PHIL: look_for %d\n",&look_for);
|
||||
printf("PHIL: obj %d\n",&obj);
|
||||
printf("PHIL: bignum_zero %d\n",&bignum_zero);
|
||||
printf("PHIL: bignum_pos_one %d\n",&bignum_pos_one);
|
||||
printf("PHIL: bignum_neg_one %d\n",&bignum_neg_one);
|
||||
printf("PHIL: code %d\n",&code);
|
||||
printf("PHIL: forwarding %d\n",&forwarding);
|
||||
printf("PHIL: code_relocation_base %d\n",&code_relocation_base);
|
||||
printf("PHIL: data_relocation_base %d\n",&data_relocation_base);
|
||||
printf("PHIL: megamorphic_cache_hits %d\n",&megamorphic_cache_hits);
|
||||
printf("PHIL: megamorphic_cache_misses %d\n",&megamorphic_cache_misses);
|
||||
printf("PHIL: max_pic_size %d\n",&max_pic_size);
|
||||
printf("PHIL: cold_call_to_ic_transitions %d\n",&cold_call_to_ic_transitions);
|
||||
printf("PHIL: ic_to_pic_transitions %d\n",&ic_to_pic_transitions);
|
||||
printf("PHIL: pic_to_mega_transitions %d\n",&pic_to_mega_transitions);
|
||||
printf("PHIL: pic_counts %d\n",&pic_counts);
|
||||
}
|
||||
|
||||
// if you change this struct, also change vm.factor k--------
|
||||
context *stack_chain;
|
||||
zone nursery; /* new objects are allocated here */
|
||||
cell cards_offset;
|
||||
cell decks_offset;
|
||||
cell userenv[USER_ENV]; /* TAGGED user environment data; see getenv/setenv prims */
|
||||
|
||||
// -------------------------------
|
||||
|
||||
// contexts
|
||||
cell ds_size, rs_size;
|
||||
context *unused_contexts;
|
||||
|
||||
// run
|
||||
cell T; /* Canonical T object. It's just a word */
|
||||
|
||||
// profiler
|
||||
bool profiling_p;
|
||||
|
||||
// errors
|
||||
/* Global variables used to pass fault handler state from signal handler to
|
||||
user-space */
|
||||
cell signal_number;
|
||||
cell signal_fault_addr;
|
||||
unsigned int signal_fpu_status;
|
||||
stack_frame *signal_callstack_top;
|
||||
|
||||
//data_heap
|
||||
bool secure_gc; /* Set by the -securegc command line argument */
|
||||
bool gc_off; /* GC is off during heap walking */
|
||||
data_heap *data;
|
||||
/* A heap walk allows useful things to be done, like finding all
|
||||
references to an object for debugging purposes. */
|
||||
cell heap_scan_ptr;
|
||||
//write barrier
|
||||
cell allot_markers_offset;
|
||||
//data_gc
|
||||
/* used during garbage collection only */
|
||||
zone *newspace;
|
||||
bool performing_gc;
|
||||
bool performing_compaction;
|
||||
cell collecting_gen;
|
||||
/* if true, we are collecting aging space for the second time, so if it is still
|
||||
full, we go on to collect tenured */
|
||||
bool collecting_aging_again;
|
||||
/* in case a generation fills up in the middle of a gc, we jump back
|
||||
up to try collecting the next generation. */
|
||||
jmp_buf gc_jmp;
|
||||
gc_stats stats[max_gen_count];
|
||||
u64 cards_scanned;
|
||||
u64 decks_scanned;
|
||||
u64 card_scan_time;
|
||||
cell code_heap_scans;
|
||||
/* What generation was being collected when copy_code_heap_roots() was last
|
||||
called? Until the next call to add_code_block(), future
|
||||
collections of younger generations don't have to touch the code
|
||||
heap. */
|
||||
cell last_code_heap_scan;
|
||||
/* sometimes we grow the heap */
|
||||
bool growing_data_heap;
|
||||
data_heap *old_data_heap;
|
||||
|
||||
// local roots
|
||||
/* If a runtime function needs to call another function which potentially
|
||||
allocates memory, it must wrap any local variable references to Factor
|
||||
objects in gc_root instances */
|
||||
std::vector<cell> gc_locals;
|
||||
std::vector<cell> gc_bignums;
|
||||
|
||||
//debug
|
||||
bool fep_disabled;
|
||||
bool full_output;
|
||||
cell look_for;
|
||||
cell obj;
|
||||
|
||||
//math
|
||||
cell bignum_zero;
|
||||
cell bignum_pos_one;
|
||||
cell bignum_neg_one;
|
||||
|
||||
//code_heap
|
||||
heap code;
|
||||
unordered_map<heap_block *,char *> forwarding;
|
||||
|
||||
//image
|
||||
cell code_relocation_base;
|
||||
cell data_relocation_base;
|
||||
|
||||
//dispatch
|
||||
cell megamorphic_cache_hits;
|
||||
cell megamorphic_cache_misses;
|
||||
|
||||
//inline cache
|
||||
cell max_pic_size;
|
||||
cell cold_call_to_ic_transitions;
|
||||
cell ic_to_pic_transitions;
|
||||
cell pic_to_mega_transitions;
|
||||
cell pic_counts[4]; /* PIC_TAG, PIC_HI_TAG, PIC_TUPLE, PIC_HI_TAG_TUPLE */
|
||||
}
|
||||
|
|
|
@ -39,21 +39,20 @@ s64 current_micros()
|
|||
- EPOCH_OFFSET) / 10;
|
||||
}
|
||||
|
||||
FACTOR_STDCALL LONG exception_handler(PEXCEPTION_POINTERS pe)
|
||||
LONG factorvm::exception_handler(PEXCEPTION_POINTERS pe)
|
||||
{
|
||||
factorvm *myvm = SIGNAL_VM_PTR();
|
||||
PEXCEPTION_RECORD e = (PEXCEPTION_RECORD)pe->ExceptionRecord;
|
||||
CONTEXT *c = (CONTEXT*)pe->ContextRecord;
|
||||
|
||||
if(myvm->in_code_heap_p(c->EIP))
|
||||
myvm->signal_callstack_top = (stack_frame *)c->ESP;
|
||||
if(in_code_heap_p(c->EIP))
|
||||
signal_callstack_top = (stack_frame *)c->ESP;
|
||||
else
|
||||
myvm->signal_callstack_top = NULL;
|
||||
signal_callstack_top = NULL;
|
||||
|
||||
switch (e->ExceptionCode) {
|
||||
case EXCEPTION_ACCESS_VIOLATION:
|
||||
myvm->signal_fault_addr = e->ExceptionInformation[1];
|
||||
c->EIP = (cell)memory_signal_handler_impl;
|
||||
signal_fault_addr = e->ExceptionInformation[1];
|
||||
c->EIP = (cell)factor::memory_signal_handler_impl;
|
||||
break;
|
||||
|
||||
case STATUS_FLOAT_DENORMAL_OPERAND:
|
||||
|
@ -65,10 +64,10 @@ FACTOR_STDCALL LONG exception_handler(PEXCEPTION_POINTERS pe)
|
|||
case STATUS_FLOAT_UNDERFLOW:
|
||||
case STATUS_FLOAT_MULTIPLE_FAULTS:
|
||||
case STATUS_FLOAT_MULTIPLE_TRAPS:
|
||||
myvm->signal_fpu_status = fpu_status(X87SW(c) | MXCSR(c));
|
||||
signal_fpu_status = fpu_status(X87SW(c) | MXCSR(c));
|
||||
X87SW(c) = 0;
|
||||
MXCSR(c) &= 0xffffffc0;
|
||||
c->EIP = (cell)fp_signal_handler_impl;
|
||||
c->EIP = (cell)factor::fp_signal_handler_impl;
|
||||
break;
|
||||
case 0x40010006:
|
||||
/* If the Widcomm bluetooth stack is installed, the BTTray.exe
|
||||
|
@ -79,24 +78,30 @@ FACTOR_STDCALL LONG exception_handler(PEXCEPTION_POINTERS pe)
|
|||
enabled. Don't really have any idea what this exception means. */
|
||||
break;
|
||||
default:
|
||||
myvm->signal_number = e->ExceptionCode;
|
||||
c->EIP = (cell)misc_signal_handler_impl;
|
||||
signal_number = e->ExceptionCode;
|
||||
c->EIP = (cell)factor::misc_signal_handler_impl;
|
||||
break;
|
||||
}
|
||||
return EXCEPTION_CONTINUE_EXECUTION;
|
||||
}
|
||||
|
||||
|
||||
FACTOR_STDCALL LONG exception_handler(PEXCEPTION_POINTERS pe)
|
||||
{
|
||||
return SIGNAL_VM_PTR()->exception_handler(pe);
|
||||
}
|
||||
|
||||
bool handler_added = 0;
|
||||
|
||||
void factorvm::c_to_factor_toplevel(cell quot)
|
||||
{
|
||||
if(!handler_added){
|
||||
if(!AddVectoredExceptionHandler(0, (PVECTORED_EXCEPTION_HANDLER)exception_handler))
|
||||
if(!AddVectoredExceptionHandler(0, (PVECTORED_EXCEPTION_HANDLER)factor::exception_handler))
|
||||
fatal_error("AddVectoredExceptionHandler failed", 0);
|
||||
handler_added = 1;
|
||||
}
|
||||
c_to_factor(quot,this);
|
||||
RemoveVectoredExceptionHandler((void *)exception_handler);
|
||||
RemoveVectoredExceptionHandler((void *)factor::exception_handler);
|
||||
}
|
||||
|
||||
void factorvm::open_console()
|
||||
|
|
|
@ -0,0 +1,116 @@
|
|||
namespace factor
|
||||
{
|
||||
|
||||
// if you change this struct, also change vm.factor k--------
|
||||
extern "C" context *stack_chain;
|
||||
extern "C" zone nursery; /* new objects are allocated here */
|
||||
extern "C" cell cards_offset;
|
||||
extern "C" cell decks_offset;
|
||||
//extern "C" cell userenv[USER_ENV]; /* TAGGED user environment data; see getenv/setenv prims */
|
||||
|
||||
// -------------------------------
|
||||
|
||||
// contexts
|
||||
extern "C" cell ds_size, rs_size;
|
||||
extern "C" context *unused_contexts;
|
||||
|
||||
|
||||
// profiler
|
||||
extern "C" bool profiling_p;
|
||||
|
||||
// errors
|
||||
/* Global variables used to pass fault handler state from signal handler to
|
||||
user-space */
|
||||
extern "C" cell signal_number;
|
||||
extern "C" cell signal_fault_addr;
|
||||
extern "C" unsigned int signal_fpu_status;
|
||||
extern "C" stack_frame *signal_callstack_top;
|
||||
|
||||
//data_heap
|
||||
extern "C" bool secure_gc; /* Set by the -securegc command line argument */
|
||||
extern "C" bool gc_off; /* GC is off during heap walking */
|
||||
extern "C" data_heap *data;
|
||||
/* A heap walk allows useful things to be done, like finding all
|
||||
references to an object for debugging purposes. */
|
||||
extern "C" cell heap_scan_ptr;
|
||||
//write barrier
|
||||
extern "C" cell allot_markers_offset;
|
||||
//data_gc
|
||||
/* used during garbage collection only */
|
||||
extern "C" zone *newspace;
|
||||
extern "C" bool performing_gc;
|
||||
extern "C" bool performing_compaction;
|
||||
extern "C" cell collecting_gen;
|
||||
/* if true, we are collecting aging space for the second time, so if it is still
|
||||
full, we go on to collect tenured */
|
||||
extern "C" bool collecting_aging_again;
|
||||
/* in case a generation fills up in the middle of a gc, we jump back
|
||||
up to try collecting the next generation. */
|
||||
extern "C" jmp_buf gc_jmp;
|
||||
extern "C" gc_stats stats[max_gen_count];
|
||||
extern "C" u64 cards_scanned;
|
||||
extern "C" u64 decks_scanned;
|
||||
extern "C" u64 card_scan_time;
|
||||
extern "C" cell code_heap_scans;
|
||||
/* What generation was being collected when copy_code_heap_roots() was last
|
||||
called? Until the next call to add_code_block(), future
|
||||
collections of younger generations don't have to touch the code
|
||||
heap. */
|
||||
extern "C" cell last_code_heap_scan;
|
||||
/* sometimes we grow the heap */
|
||||
extern "C" bool growing_data_heap;
|
||||
extern "C" data_heap *old_data_heap;
|
||||
|
||||
// local roots
|
||||
/* If a runtime function needs to call another function which potentially
|
||||
allocates memory, it must wrap any local variable references to Factor
|
||||
objects in gc_root instances */
|
||||
//extern "C" segment *gc_locals_region;
|
||||
//extern "C" cell gc_locals;
|
||||
//extern "C" segment *gc_bignums_region;
|
||||
//extern "C" cell gc_bignums;
|
||||
|
||||
//debug
|
||||
extern "C" bool fep_disabled;
|
||||
extern "C" bool full_output;
|
||||
extern "C" cell look_for;
|
||||
extern "C" cell obj;
|
||||
|
||||
//math
|
||||
extern "C" cell bignum_zero;
|
||||
extern "C" cell bignum_pos_one;
|
||||
extern "C" cell bignum_neg_one;
|
||||
|
||||
//code_heap
|
||||
extern "C" heap code;
|
||||
extern "C" unordered_map<heap_block *,char *> forwarding;
|
||||
|
||||
//image
|
||||
extern "C" cell code_relocation_base;
|
||||
extern "C" cell data_relocation_base;
|
||||
|
||||
//dispatch
|
||||
extern "C" cell megamorphic_cache_hits;
|
||||
extern "C" cell megamorphic_cache_misses;
|
||||
|
||||
//inline cache
|
||||
extern "C" cell max_pic_size;
|
||||
extern "C" cell cold_call_to_ic_transitions;
|
||||
extern "C" cell ic_to_pic_transitions;
|
||||
extern "C" cell pic_to_mega_transitions;
|
||||
extern "C" cell pic_counts[4]; /* PIC_TAG, PIC_HI_TAG, PIC_TUPLE, PIC_HI_TAG_TUPLE */
|
||||
|
||||
struct factorvmdata {
|
||||
cell userenv[USER_ENV]; /* TAGGED user environment data; see getenv/setenv prims */
|
||||
|
||||
// run
|
||||
cell T; /* Canonical T object. It's just a word */
|
||||
|
||||
// local roots
|
||||
/* If a runtime function needs to call another function which potentially
|
||||
allocates memory, it must wrap any local variable references to Factor
|
||||
objects in gc_root instances */
|
||||
std::vector<cell> gc_locals;
|
||||
std::vector<cell> gc_bignums;
|
||||
};
|
||||
}
|
|
@ -0,0 +1,105 @@
|
|||
namespace factor
|
||||
{
|
||||
|
||||
struct factorvmdata {
|
||||
// if you change this struct, also change vm.factor k--------
|
||||
context *stack_chain;
|
||||
zone nursery; /* new objects are allocated here */
|
||||
cell cards_offset;
|
||||
cell decks_offset;
|
||||
cell userenv[USER_ENV]; /* TAGGED user environment data; see getenv/setenv prims */
|
||||
|
||||
// -------------------------------
|
||||
|
||||
// contexts
|
||||
cell ds_size, rs_size;
|
||||
context *unused_contexts;
|
||||
|
||||
// run
|
||||
cell T; /* Canonical T object. It's just a word */
|
||||
|
||||
// profiler
|
||||
bool profiling_p;
|
||||
|
||||
// errors
|
||||
/* Global variables used to pass fault handler state from signal handler to
|
||||
user-space */
|
||||
cell signal_number;
|
||||
cell signal_fault_addr;
|
||||
unsigned int signal_fpu_status;
|
||||
stack_frame *signal_callstack_top;
|
||||
|
||||
//data_heap
|
||||
bool secure_gc; /* Set by the -securegc command line argument */
|
||||
bool gc_off; /* GC is off during heap walking */
|
||||
data_heap *data;
|
||||
/* A heap walk allows useful things to be done, like finding all
|
||||
references to an object for debugging purposes. */
|
||||
cell heap_scan_ptr;
|
||||
//write barrier
|
||||
cell allot_markers_offset;
|
||||
//data_gc
|
||||
/* used during garbage collection only */
|
||||
zone *newspace;
|
||||
bool performing_gc;
|
||||
bool performing_compaction;
|
||||
cell collecting_gen;
|
||||
/* if true, we are collecting aging space for the second time, so if it is still
|
||||
full, we go on to collect tenured */
|
||||
bool collecting_aging_again;
|
||||
/* in case a generation fills up in the middle of a gc, we jump back
|
||||
up to try collecting the next generation. */
|
||||
jmp_buf gc_jmp;
|
||||
gc_stats stats[max_gen_count];
|
||||
u64 cards_scanned;
|
||||
u64 decks_scanned;
|
||||
u64 card_scan_time;
|
||||
cell code_heap_scans;
|
||||
/* What generation was being collected when copy_code_heap_roots() was last
|
||||
called? Until the next call to add_code_block(), future
|
||||
collections of younger generations don't have to touch the code
|
||||
heap. */
|
||||
cell last_code_heap_scan;
|
||||
/* sometimes we grow the heap */
|
||||
bool growing_data_heap;
|
||||
data_heap *old_data_heap;
|
||||
|
||||
// local roots
|
||||
/* If a runtime function needs to call another function which potentially
|
||||
allocates memory, it must wrap any local variable references to Factor
|
||||
objects in gc_root instances */
|
||||
std::vector<cell> gc_locals;
|
||||
std::vector<cell> gc_bignums;
|
||||
|
||||
//debug
|
||||
bool fep_disabled;
|
||||
bool full_output;
|
||||
cell look_for;
|
||||
cell obj;
|
||||
|
||||
//math
|
||||
cell bignum_zero;
|
||||
cell bignum_pos_one;
|
||||
cell bignum_neg_one;
|
||||
|
||||
//code_heap
|
||||
heap code;
|
||||
unordered_map<heap_block *,char *> forwarding;
|
||||
|
||||
//image
|
||||
cell code_relocation_base;
|
||||
cell data_relocation_base;
|
||||
|
||||
//dispatch
|
||||
cell megamorphic_cache_hits;
|
||||
cell megamorphic_cache_misses;
|
||||
|
||||
//inline cache
|
||||
cell max_pic_size;
|
||||
cell cold_call_to_ic_transitions;
|
||||
cell ic_to_pic_transitions;
|
||||
cell pic_to_mega_transitions;
|
||||
cell pic_counts[4]; /* PIC_TAG, PIC_HI_TAG, PIC_TUPLE, PIC_HI_TAG_TUPLE */
|
||||
};
|
||||
|
||||
}
|
105
vm/vm.hpp
105
vm/vm.hpp
|
@ -1,106 +1,8 @@
|
|||
#include "vm-data-dummy.hpp"
|
||||
|
||||
namespace factor
|
||||
{
|
||||
|
||||
struct factorvmdata {
|
||||
// if you change this struct, also change vm.factor k--------
|
||||
context *stack_chain;
|
||||
zone nursery; /* new objects are allocated here */
|
||||
cell cards_offset;
|
||||
cell decks_offset;
|
||||
cell userenv[USER_ENV]; /* TAGGED user environment data; see getenv/setenv prims */
|
||||
|
||||
// -------------------------------
|
||||
|
||||
// contexts
|
||||
cell ds_size, rs_size;
|
||||
context *unused_contexts;
|
||||
|
||||
// run
|
||||
cell T; /* Canonical T object. It's just a word */
|
||||
|
||||
// profiler
|
||||
bool profiling_p;
|
||||
|
||||
// errors
|
||||
/* Global variables used to pass fault handler state from signal handler to
|
||||
user-space */
|
||||
cell signal_number;
|
||||
cell signal_fault_addr;
|
||||
unsigned int signal_fpu_status;
|
||||
stack_frame *signal_callstack_top;
|
||||
//data_heap
|
||||
bool secure_gc; /* Set by the -securegc command line argument */
|
||||
bool gc_off; /* GC is off during heap walking */
|
||||
data_heap *data;
|
||||
/* A heap walk allows useful things to be done, like finding all
|
||||
references to an object for debugging purposes. */
|
||||
cell heap_scan_ptr;
|
||||
//write barrier
|
||||
cell allot_markers_offset;
|
||||
//data_gc
|
||||
/* used during garbage collection only */
|
||||
zone *newspace;
|
||||
bool performing_gc;
|
||||
bool performing_compaction;
|
||||
cell collecting_gen;
|
||||
/* if true, we are collecting aging space for the second time, so if it is still
|
||||
full, we go on to collect tenured */
|
||||
bool collecting_aging_again;
|
||||
/* in case a generation fills up in the middle of a gc, we jump back
|
||||
up to try collecting the next generation. */
|
||||
jmp_buf gc_jmp;
|
||||
gc_stats stats[max_gen_count];
|
||||
u64 cards_scanned;
|
||||
u64 decks_scanned;
|
||||
u64 card_scan_time;
|
||||
cell code_heap_scans;
|
||||
/* What generation was being collected when copy_code_heap_roots() was last
|
||||
called? Until the next call to add_code_block(), future
|
||||
collections of younger generations don't have to touch the code
|
||||
heap. */
|
||||
cell last_code_heap_scan;
|
||||
/* sometimes we grow the heap */
|
||||
bool growing_data_heap;
|
||||
data_heap *old_data_heap;
|
||||
|
||||
// local roots
|
||||
/* If a runtime function needs to call another function which potentially
|
||||
allocates memory, it must wrap any local variable references to Factor
|
||||
objects in gc_root instances */
|
||||
std::vector<cell> gc_locals;
|
||||
std::vector<cell> gc_bignums;
|
||||
|
||||
//debug
|
||||
bool fep_disabled;
|
||||
bool full_output;
|
||||
cell look_for;
|
||||
cell obj;
|
||||
|
||||
//math
|
||||
cell bignum_zero;
|
||||
cell bignum_pos_one;
|
||||
cell bignum_neg_one;
|
||||
|
||||
//code_heap
|
||||
heap code;
|
||||
unordered_map<heap_block *,char *> forwarding;
|
||||
|
||||
//image
|
||||
cell code_relocation_base;
|
||||
cell data_relocation_base;
|
||||
|
||||
//dispatch
|
||||
cell megamorphic_cache_hits;
|
||||
cell megamorphic_cache_misses;
|
||||
|
||||
//inline cache
|
||||
cell max_pic_size;
|
||||
cell cold_call_to_ic_transitions;
|
||||
cell ic_to_pic_transitions;
|
||||
cell pic_to_mega_transitions;
|
||||
cell pic_counts[4]; /* PIC_TAG, PIC_HI_TAG, PIC_TUPLE, PIC_HI_TAG_TUPLE */
|
||||
};
|
||||
|
||||
struct factorvm : factorvmdata {
|
||||
|
||||
// segments
|
||||
|
@ -694,6 +596,7 @@ struct factorvm : factorvmdata {
|
|||
|
||||
#if defined(WINNT)
|
||||
void open_console();
|
||||
LONG exception_handler(PEXCEPTION_POINTERS pe);
|
||||
// next method here:
|
||||
#endif
|
||||
#else // UNIX
|
||||
|
@ -702,9 +605,11 @@ struct factorvm : factorvmdata {
|
|||
|
||||
#endif
|
||||
|
||||
void print_vm_data();
|
||||
};
|
||||
|
||||
|
||||
|
||||
#define FACTOR_SINGLE_THREADED_SINGLETON
|
||||
|
||||
#ifdef FACTOR_SINGLE_THREADED_SINGLETON
|
||||
|
|
Loading…
Reference in New Issue