VM: Refactor free_list_allocator to Factor style

db4
Erik Charlebois 2013-05-11 22:02:05 -04:00
parent c0aa1c7b3e
commit f40718dfab
1 changed files with 153 additions and 171 deletions

View File

@ -1,229 +1,211 @@
namespace factor namespace factor {
{
template<typename Block> struct free_list_allocator { template <typename Block> struct free_list_allocator {
cell size; cell size;
cell start; cell start;
cell end; cell end;
free_list free_blocks; free_list free_blocks;
mark_bits<Block> state; mark_bits<Block> state;
explicit free_list_allocator(cell size, cell start); explicit free_list_allocator(cell size, cell start);
void initial_free_list(cell occupied); void initial_free_list(cell occupied);
bool contains_p(Block *block); bool contains_p(Block* block);
Block *first_block(); Block* first_block();
Block *last_block(); Block* last_block();
Block *next_block_after(Block *block); Block* next_block_after(Block* block);
Block *next_allocated_block_after(Block *block); Block* next_allocated_block_after(Block* block);
bool can_allot_p(cell size); bool can_allot_p(cell size);
Block *allot(cell size); Block* allot(cell size);
void free(Block *block); void free(Block* block);
cell occupied_space(); cell occupied_space();
cell free_space(); cell free_space();
cell largest_free_block(); cell largest_free_block();
cell free_block_count(); cell free_block_count();
void sweep(); void sweep();
template<typename Iterator> void sweep(Iterator &iter); template <typename Iterator> void sweep(Iterator& iter);
template<typename Iterator, typename Fixup> void compact(Iterator &iter, Fixup fixup, const Block **finger); template <typename Iterator, typename Fixup>
template<typename Iterator, typename Fixup> void iterate(Iterator &iter, Fixup fixup); void compact(Iterator& iter, Fixup fixup, const Block** finger);
template<typename Iterator> void iterate(Iterator &iter); template <typename Iterator, typename Fixup>
void iterate(Iterator& iter, Fixup fixup);
template <typename Iterator> void iterate(Iterator& iter);
}; };
template<typename Block> template <typename Block>
free_list_allocator<Block>::free_list_allocator(cell size_, cell start_) : free_list_allocator<Block>::free_list_allocator(cell size_, cell start_)
size(size_), : size(size_),
start(start_), start(start_),
end(start_ + size_), end(start_ + size_),
state(mark_bits<Block>(size_,start_)) state(mark_bits<Block>(size_, start_)) {
{ initial_free_list(0);
initial_free_list(0);
} }
template<typename Block> void free_list_allocator<Block>::initial_free_list(cell occupied) template <typename Block>
{ void free_list_allocator<Block>::initial_free_list(cell occupied) {
free_blocks.initial_free_list(start,end,occupied); free_blocks.initial_free_list(start, end, occupied);
} }
template<typename Block> bool free_list_allocator<Block>::contains_p(Block *block) template <typename Block>
{ bool free_list_allocator<Block>::contains_p(Block* block) {
return ((cell)block - start) < size; return ((cell) block - start) < size;
} }
template<typename Block> Block *free_list_allocator<Block>::first_block() template <typename Block> Block* free_list_allocator<Block>::first_block() {
{ return (Block*)start;
return (Block *)start;
} }
template<typename Block> Block *free_list_allocator<Block>::last_block() template <typename Block> Block* free_list_allocator<Block>::last_block() {
{ return (Block*)end;
return (Block *)end;
} }
template<typename Block> Block *free_list_allocator<Block>::next_block_after(Block *block) template <typename Block>
{ Block* free_list_allocator<Block>::next_block_after(Block* block) {
return (Block *)((cell)block + block->size()); return (Block*)((cell) block + block->size());
} }
template<typename Block> Block *free_list_allocator<Block>::next_allocated_block_after(Block *block) template <typename Block>
{ Block* free_list_allocator<Block>::next_allocated_block_after(Block* block) {
while(block != this->last_block() && block->free_p()) while (block != this->last_block() && block->free_p()) {
{ free_heap_block* free_block = (free_heap_block*)block;
free_heap_block *free_block = (free_heap_block *)block; block = (object*)((cell) free_block + free_block->size());
block = (object *)((cell)free_block + free_block->size()); }
}
if(block == this->last_block()) if (block == this->last_block())
return NULL; return NULL;
else else
return block; return block;
} }
template<typename Block> bool free_list_allocator<Block>::can_allot_p(cell size) template <typename Block>
{ bool free_list_allocator<Block>::can_allot_p(cell size) {
return free_blocks.can_allot_p(size); return free_blocks.can_allot_p(size);
} }
template<typename Block> Block *free_list_allocator<Block>::allot(cell size) template <typename Block> Block* free_list_allocator<Block>::allot(cell size) {
{ size = align(size, data_alignment);
size = align(size,data_alignment);
free_heap_block *block = free_blocks.find_free_block(size); free_heap_block* block = free_blocks.find_free_block(size);
if(block) if (block) {
{ block = free_blocks.split_free_block(block, size);
block = free_blocks.split_free_block(block,size); return (Block*)block;
return (Block *)block; } else
} return NULL;
else
return NULL;
} }
template<typename Block> void free_list_allocator<Block>::free(Block *block) template <typename Block> void free_list_allocator<Block>::free(Block* block) {
{ free_heap_block* free_block = (free_heap_block*)block;
free_heap_block *free_block = (free_heap_block *)block; free_block->make_free(block->size());
free_block->make_free(block->size()); free_blocks.add_to_free_list(free_block);
free_blocks.add_to_free_list(free_block);
} }
template<typename Block> cell free_list_allocator<Block>::free_space() template <typename Block> cell free_list_allocator<Block>::free_space() {
{ return free_blocks.free_space;
return free_blocks.free_space;
} }
template<typename Block> cell free_list_allocator<Block>::occupied_space() template <typename Block> cell free_list_allocator<Block>::occupied_space() {
{ return size - free_blocks.free_space;
return size - free_blocks.free_space;
} }
template<typename Block> cell free_list_allocator<Block>::largest_free_block() template <typename Block>
{ cell free_list_allocator<Block>::largest_free_block() {
return free_blocks.largest_free_block(); return free_blocks.largest_free_block();
} }
template<typename Block> cell free_list_allocator<Block>::free_block_count() template <typename Block> cell free_list_allocator<Block>::free_block_count() {
{ return free_blocks.free_block_count;
return free_blocks.free_block_count;
} }
template<typename Block> template <typename Block>
template<typename Iterator> template <typename Iterator>
void free_list_allocator<Block>::sweep(Iterator &iter) void free_list_allocator<Block>::sweep(Iterator& iter) {
{ free_blocks.clear_free_list();
free_blocks.clear_free_list();
Block *start = this->first_block(); Block* start = this->first_block();
Block *end = this->last_block(); Block* end = this->last_block();
while(start != end) while (start != end) {
{ /* find next unmarked block */
/* find next unmarked block */ start = state.next_unmarked_block_after(start);
start = state.next_unmarked_block_after(start);
if(start != end) if (start != end) {
{ /* find size */
/* find size */ cell size = state.unmarked_block_size(start);
cell size = state.unmarked_block_size(start); FACTOR_ASSERT(size > 0);
FACTOR_ASSERT(size > 0);
free_heap_block *free_block = (free_heap_block *)start; free_heap_block* free_block = (free_heap_block*)start;
free_block->make_free(size); free_block->make_free(size);
free_blocks.add_to_free_list(free_block); free_blocks.add_to_free_list(free_block);
iter(start, size); iter(start, size);
start = (Block *)((char *)start + size); start = (Block*)((char*)start + size);
} }
} }
} }
template<typename Block> template <typename Block> struct null_sweep_iterator {
struct null_sweep_iterator void operator()(Block* free_block, cell size) {}
{
void operator()(Block *free_block, cell size) {}
}; };
template<typename Block> template <typename Block> void free_list_allocator<Block>::sweep() {
void free_list_allocator<Block>::sweep() null_sweep_iterator<Block> none;
{ sweep(none);
null_sweep_iterator<Block> none;
sweep(none);
} }
template<typename Block, typename Iterator> struct heap_compactor { template <typename Block, typename Iterator> struct heap_compactor {
mark_bits<Block> *state; mark_bits<Block>* state;
char *address; char* address;
Iterator &iter; Iterator& iter;
const Block **finger; const Block** finger;
explicit heap_compactor(mark_bits<Block> *state_, Block *address_, Iterator &iter_, const Block **finger_) : explicit heap_compactor(mark_bits<Block>* state_, Block* address_,
state(state_), address((char *)address_), iter(iter_), finger(finger_) {} Iterator& iter_, const Block** finger_)
: state(state_), address((char*)address_), iter(iter_), finger(finger_) {}
void operator()(Block *block, cell size) void operator()(Block* block, cell size) {
{ if (this->state->marked_p(block)) {
if(this->state->marked_p(block)) *finger = (Block*)((char*)block + size);
{ memmove((Block*)address, block, size);
*finger = (Block *)((char *)block + size); iter(block, (Block*)address, size);
memmove((Block *)address,block,size); address += size;
iter(block,(Block *)address,size); }
address += size; }
}
}
}; };
/* The forwarding map must be computed first by calling /* The forwarding map must be computed first by calling
state.compute_forwarding(). */ state.compute_forwarding(). */
template<typename Block> template <typename Block>
template<typename Iterator, typename Fixup> template <typename Iterator, typename Fixup>
void free_list_allocator<Block>::compact(Iterator &iter, Fixup fixup, const Block **finger) void free_list_allocator<Block>::compact(Iterator& iter, Fixup fixup,
{ const Block** finger) {
heap_compactor<Block,Iterator> compactor(&state,first_block(),iter,finger); heap_compactor<Block, Iterator> compactor(&state, first_block(), iter,
iterate(compactor,fixup); finger);
iterate(compactor, fixup);
/* Now update the free list; there will be a single free block at /* Now update the free list; there will be a single free block at
the end */ the end */
free_blocks.initial_free_list(start,end,(cell)compactor.address - start); free_blocks.initial_free_list(start, end, (cell) compactor.address - start);
} }
/* During compaction we have to be careful and measure object sizes differently */ /* During compaction we have to be careful and measure object sizes
template<typename Block> differently */
template<typename Iterator, typename Fixup> template <typename Block>
void free_list_allocator<Block>::iterate(Iterator &iter, Fixup fixup) template <typename Iterator, typename Fixup>
{ void free_list_allocator<Block>::iterate(Iterator& iter, Fixup fixup) {
Block *scan = first_block(); Block* scan = first_block();
Block *end = last_block(); Block* end = last_block();
while(scan != end) while (scan != end) {
{ cell size = fixup.size(scan);
cell size = fixup.size(scan); Block* next = (Block*)((cell) scan + size);
Block *next = (Block *)((cell)scan + size); if (!scan->free_p())
if(!scan->free_p()) iter(scan,size); iter(scan, size);
scan = next; scan = next;
} }
} }
template<typename Block> template <typename Block>
template<typename Iterator> template <typename Iterator>
void free_list_allocator<Block>::iterate(Iterator &iter) void free_list_allocator<Block>::iterate(Iterator& iter) {
{ iterate(iter, no_fixup());
iterate(iter,no_fixup());
} }
} }