factor/vm/code_gc.c

344 lines
7.5 KiB
C

#include "factor.h"
/* This malloc-style heap code is reasonably generic. Maybe in the future, it
will be used for the data heap too, if we ever get incremental
mark/sweep/compact GC. */
void new_heap(F_HEAP *heap, CELL size)
{
heap->base = (CELL)(alloc_segment(size)->start);
if(heap->base == 0)
fatal_error("Cannot allocate code heap",size);
heap->limit = heap->base + size;
heap->free_list = NULL;
}
/* Allocate a code heap during startup */
void init_code_heap(CELL size)
{
new_heap(&compiling,size);
}
/* If there is no previous block, next_free becomes the head of the free list,
else its linked in */
INLINE void update_free_list(F_HEAP *heap, F_BLOCK *prev, F_BLOCK *next_free)
{
if(prev)
prev->next_free = next_free;
else
heap->free_list = next_free;
}
/* Called after reading the code heap from the image file, and after code GC.
In the former case, we must add a large free block from compiling.base + size to
compiling.limit. */
void build_free_list(F_HEAP *heap, CELL size)
{
F_BLOCK *prev = NULL;
F_BLOCK *prev_free = NULL;
F_BLOCK *scan = (F_BLOCK *)heap->base;
F_BLOCK *end = (F_BLOCK *)(heap->base + size);
/* Add all free blocks to the free list */
while(scan && scan < end)
{
switch(scan->status)
{
case B_FREE:
update_free_list(heap,prev_free,scan);
prev_free = scan;
break;
case B_ALLOCATED:
break;
default:
critical_error("Invalid scan->status",(CELL)scan);
break;
}
prev = scan;
scan = next_block(heap,scan);
}
/* If there is room at the end of the heap, add a free block. This
branch is only taken after loading a new image, not after code GC */
if((CELL)(end + 1) <= heap->limit)
{
end->status = B_FREE;
end->next_free = NULL;
end->size = heap->limit - (CELL)end;
/* add final free block */
update_free_list(heap,prev_free,end);
}
/* This branch is taken if the newly loaded image fits exactly, or
after code GC */
else
{
/* even if there's no room at the end of the heap for a new
free block, we might have to jigger it up by a few bytes in
case prev + prev->size */
if(prev)
prev->size = heap->limit - (CELL)prev;
/* this is the last free block */
update_free_list(heap,prev_free,NULL);
}
}
/* Allocate a block of memory from the mark and sweep GC heap */
CELL heap_allot(F_HEAP *heap, CELL size)
{
F_BLOCK *prev = NULL;
F_BLOCK *scan = heap->free_list;
size = align8(size);
while(scan)
{
CELL this_size = scan->size - sizeof(F_BLOCK);
if(scan->status != B_FREE)
critical_error("Invalid block in free list",(CELL)scan);
if(this_size < size)
{
prev = scan;
scan = scan->next_free;
continue;
}
/* we found a candidate block */
F_BLOCK *next_free;
if(this_size - size <= sizeof(F_BLOCK))
{
/* too small to be split */
next_free = scan->next_free;
}
else
{
/* split the block in two */
CELL new_size = size + sizeof(F_BLOCK);
F_BLOCK *split = (F_BLOCK *)((CELL)scan + new_size);
split->status = B_FREE;
split->size = scan->size - new_size;
split->next_free = scan->next_free;
scan->size = new_size;
next_free = split;
}
/* update the free list */
update_free_list(heap,prev,next_free);
/* this is our new block */
scan->status = B_ALLOCATED;
return (CELL)(scan + 1);
}
return 0;
}
/* After code GC, all referenced code blocks have status set to B_MARKED, so any
which are allocated and not marked can be reclaimed. */
void free_unmarked(F_HEAP *heap)
{
F_BLOCK *prev = NULL;
F_BLOCK *scan = (F_BLOCK *)heap->base;
while(scan)
{
switch(scan->status)
{
case B_ALLOCATED:
if(prev && prev->status == B_FREE)
prev->size += scan->size;
else
{
scan->status = B_FREE;
prev = scan;
}
break;
case B_FREE:
if(prev && prev->status == B_FREE)
prev->size += scan->size;
break;
case B_MARKED:
scan->status = B_ALLOCATED;
prev = scan;
break;
default:
critical_error("Invalid scan->status",(CELL)scan);
}
scan = next_block(heap,scan);
}
build_free_list(heap,heap->limit - heap->base);
}
/* Compute total sum of sizes of free blocks */
CELL heap_free_space(F_HEAP *heap)
{
CELL size = 0;
F_BLOCK *scan = (F_BLOCK *)heap->base;
while(scan)
{
if(scan->status == B_FREE)
size += scan->size;
scan = next_block(heap,scan);
}
return size;
}
/* The size of the heap, not including the last block if it's free */
CELL heap_size(F_HEAP *heap)
{
F_BLOCK *scan = (F_BLOCK *)heap->base;
while(next_block(heap,scan) != NULL)
scan = next_block(heap,scan);
/* this is the last block in the heap, and it is free */
if(scan->status == B_FREE)
return (CELL)scan - heap->base;
/* otherwise the last block is allocated */
else
return heap->limit - heap->base;
}
/* Apply a function to every code block */
void iterate_code_heap(CODE_HEAP_ITERATOR iter)
{
F_BLOCK *scan = (F_BLOCK *)compiling.base;
while(scan)
{
if(scan->status != B_FREE)
iterate_code_heap_step((F_COMPILED *)(scan + 1),iter);
scan = next_block(&compiling,scan);
}
}
/* Copy all literals referenced from a code block to newspace */
void collect_literals_step(F_COMPILED *compiled, CELL code_start,
CELL reloc_start, CELL literal_start, CELL words_start, CELL words_end)
{
CELL scan;
CELL literal_end = literal_start + compiled->literal_length;
for(scan = literal_start; scan < literal_end; scan += CELLS)
copy_handle((CELL*)scan);
/* If the block is not finalized, the words area contains pointers to
words in the data heap rather than XTs in the code heap */
switch(compiled->finalized)
{
case false:
for(scan = words_start; scan < words_end; scan += CELLS)
copy_handle((CELL*)scan);
break;
case true:
break;
default:
critical_error("Invalid compiled->finalized",(CELL)compiled);
}
}
/* Copy literals referenced from all code blocks to newspace */
void collect_literals(void)
{
iterate_code_heap(collect_literals_step);
}
/* Mark all XTs referenced from a code block */
void mark_sweep_step(F_COMPILED *compiled, CELL code_start,
CELL reloc_start, CELL literal_start, CELL words_start, CELL words_end)
{
CELL scan;
for(scan = words_start; scan < words_end; scan += CELLS)
recursive_mark(get(scan));
}
/* Mark all XTs and literals referenced from a word XT */
void recursive_mark(CELL xt)
{
F_BLOCK *block = xt_to_block(xt);
/* If already marked, do nothing */
switch(block->status)
{
case B_MARKED:
return;
case B_ALLOCATED:
block->status = B_MARKED;
break;
default:
critical_error("Marking the wrong block",(CELL)block);
break;
}
F_COMPILED *compiled = xt_to_compiled(xt);
iterate_code_heap_step(compiled,collect_literals_step);
switch(compiled->finalized)
{
case false:
break;
case true:
iterate_code_heap_step(compiled,mark_sweep_step);
break;
default:
critical_error("Invalid compiled->finalized",(CELL)compiled);
break;
}
}
/* Push the free space and total size of the code heap */
void primitive_code_room(void)
{
dpush(tag_fixnum(heap_free_space(&compiling) / 1024));
dpush(tag_fixnum((compiling.limit - compiling.base) / 1024));
}
/* Perform a code GC */
void primitive_code_gc(void)
{
garbage_collection(TENURED,true);
}
/* Dump all code blocks for debugging */
void dump_heap(F_HEAP *heap)
{
F_BLOCK *scan = (F_BLOCK *)heap->base;
while(scan)
{
char *status;
switch(scan->status)
{
case B_FREE:
status = "free";
break;
case B_ALLOCATED:
status = "allocated";
break;
case B_MARKED:
status = "marked";
break;
default:
status = "invalid";
break;
}
fprintf(stderr,"%lx %s\n",(CELL)scan,status);
scan = next_block(heap,scan);
}
}